Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Biol Chem ; 300(3): 105776, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382670

ABSTRACT

The CCAAT/enhancer-binding proteins (C/EBPs) constitute a family of pivotal transcription factors involved in tissue development, cellular function, proliferation, and differentiation. NFIL3, as one of them, plays an important role in regulating immune cell differentiation, circadian clock system, and neural regeneration, yet its specific DNA recognition mechanism remains enigmatic. In this study, we showed by the ITC binding experiments that NFIL3 prefers to bind to the TTACGTAA DNA motif. Our structural studies revealed that the α-helical NFIL3 bZIP domain dimerizes through its leucine zipper region, and binds to DNA via its basic region. The two basic regions of the NFIL3 bZIP dimer were pushed apart upon binding to DNA, facilitating the snug accommodation of the two basic regions within the major grooves of the DNA. Remarkably, our binding and structural data also revealed that both NFIL3 and C/EBPα/ß demonstrate a shared preference for the TTACGTAA sequence. Furthermore, our study revealed that disease-associated mutations within the NFIL3 bZIP domain result in either reduction or complete disruption of its DNA binding ability. These discoveries not only provide valuable insights into the DNA binding mechanisms of NFIL3 but also elucidate the causal role of NFIL3 mutations in disease pathogenesis.


Subject(s)
Basic-Leucine Zipper Transcription Factors , DNA , Amino Acid Sequence , Base Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , DNA/metabolism , Transcription Factors/metabolism , Humans
2.
Plant Physiol ; 192(4): 2640-2655, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37070859

ABSTRACT

Orange carotenoid protein (OCP) is a photoactive protein that participates in the photoprotection of cyanobacteria. There are 2 full-length OCP proteins, 4 N-terminal paralogs (helical carotenoid protein [HCP]), and 1 C-terminal domain-like carotenoid protein (CCP) found in Nostoc flagelliforme, a desert cyanobacterium. All HCPs (HCP1 to 3 and HCP6) from N. flagelliforme demonstrated their excellent singlet oxygen quenching activities, in which HCP2 was the strongest singlet oxygen quencher compared with others. Two OCPs, OCPx1 and OCPx2, were not involved in singlet oxygen scavenging; instead, they functioned as phycobilisome fluorescence quenchers. The fast-acting OCPx1 showed more effective photoactivation and stronger phycobilisome fluorescence quenching compared with OCPx2, which behaved differently from all reported OCP paralogs. The resolved crystal structure and mutant analysis revealed that Trp111 and Met125 play essential roles in OCPx2, which is dominant and long acting. The resolved crystal structure of OCPx2 is maintained in a monomer state and showed more flexible regulation in energy quenching activities compared with the packed oligomer of OCPx1. The recombinant apo-CCP obtained the carotenoid pigment from holo-HCPs and holo-OCPx1 of N. flagelliforme. No such carotenoid transferring processes were observed between apo-CCP and holo-OCPx2. The close phylogenetic relationship of OCP paralogs from subaerial Nostoc species indicates an adaptive evolution toward development of photoprotection: protecting cellular metabolism against singlet oxygen damage using HCPs and against excess energy captured by active phycobilisomes using 2 different working modes of OCPx.


Subject(s)
Nostoc , Phycobilisomes , Phylogeny , Phycobilisomes/metabolism , Singlet Oxygen , Bacterial Proteins/metabolism , Carotenoids/metabolism , Nostoc/genetics , Nostoc/metabolism
3.
Sensors (Basel) ; 24(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124072

ABSTRACT

Rotation modulation is a technique that relies on the specific rotation of an inertial measurement unit (IMU) to achieve the self-compensation of device errors. Common rotation schemes are classified into two modes: continuous rotation and a rotation-stop combination. Aiming at the problem of the poor modulation of slow-varying errors in the rotation-stop combination mode, a detailed analysis is conducted on the modulation effects of slow-varying errors in three schemes employing different rotation modes. Firstly, a detailed mathematical analysis is performed on the influence of gyro slow-varying drifts on two rotation modes, and the analysis results are validated through simulations. Subsequently, simulation experiments are conducted on three schemes to analyze their modulation effects on the slow-varying errors of inertial devices. The simulation results reveal that the modified dual-axis rotation scheme exhibits superior modulation effects on the slow-varying errors of inertial devices compared to the dual-axis sixteen-position rotation scheme and the multi-axis alternating continuous rotation scheme.

4.
J Biol Chem ; 297(6): 101351, 2021 12.
Article in English | MEDLINE | ID: mdl-34715126

ABSTRACT

Bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) (also called transcription termination factor-1 interacting protein 5), a key component of the nucleolar remodeling complex, recruits the nucleolar remodeling complex to ribosomal RNA genes, leading to their transcriptional repression. In addition to its tandem plant homeodomain-bromodomain that is involved in binding to acetylated histone H4, BAZ2A also contains a methyl-CpG-binding domain (MBD)-like Tip5/ARBP/MBD (TAM) domain that shares sequence homology with the MBD. In contrast with the methyl-CpG-binding ability of the canonical MBD, the BAZ2A TAM domain has been shown to bind to promoter-associated RNAs of ribosomal RNA genes and promoter DNAs of other genes independent of DNA methylation. Nevertheless, how the TAM domain binds to RNA/DNA mechanistically remains elusive. Here, we characterized the DNA-/RNA-binding basis of the BAZ2A TAM domain by EMSAs, isothermal titration calorimetry binding assays, mutagenesis analysis, and X-ray crystallography. Our results showed that the TAM domain of BAZ2A selectively binds to dsDNA and dsRNA and that it binds to the backbone of dsDNA in a sequence nonspecific manner, which is distinct from the base-specific binding of the canonical MBD. Thus, our results explain why the TAM domain of BAZ2A does not specifically bind to mCG or TG dsDNA like the canonical MBD and also provide insights for further biological study of BAZ2A acting as a transcription factor in the future.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , RNA/metabolism , Chromosomal Proteins, Non-Histone/chemistry , DNA/chemistry , DNA Methylation , Humans , Models, Molecular , Protein Binding , Protein Domains , RNA/chemistry
5.
Crit Rev Biochem Mol Biol ; 54(2): 119-132, 2019 04.
Article in English | MEDLINE | ID: mdl-31046474

ABSTRACT

Tudor domain-containing (TDRD) proteins, as a family of evolutionarily conserved proteins, have been studied extensively in recent years in terms of their biological and biochemical functions. A major function of the TDRD proteins is to recognize the N-terminal arginine-rich motifs of the P-element-induced wimpy testis (PIWI) proteins via their conserved extended Tudor (eTudor or eTud) domains, which is essential in piRNA biogenesis and germ cell development. In this review, we summarize recent progress in the study of the TDRD proteins, and discuss the molecular mechanisms for the different binding selectivity of these eTudor domains to PIWI proteins based on the available binding and structural data. Understanding the binding differences of these TDRDs to PIWI proteins will help us better understand their functional differences and aid us in developing the target-specific therapeutics, because overexpression or mutations of the human TDRD proteins have been demonstrated to associate with various diseases.


Subject(s)
Argonaute Proteins/metabolism , Proteins/metabolism , Tudor Domain , Amino Acid Motifs , Animals , Arginine/chemistry , Arginine/metabolism , Argonaute Proteins/chemistry , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Humans , Methylation , Models, Molecular , Protein Binding , Proteins/chemistry , RNA, Small Interfering/metabolism
6.
Methods ; 175: 72-78, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31288074

ABSTRACT

The interaction of Tudor domain-containing proteins (TDRDs) with P-element-induced wimpy testis (PIWI) proteins plays critical roles in transposon silencing and spermatogenesis. Most human TDRDs recognize PIWI proteins in a methylarginine-dependent manner via their extended Tudor (eTudor) domains, except TDRD2, which prefers an unmethylated PIWI protein. In order to illustrate the recognition of unmethylated PIWI proteins by TDRD2, we extensively tried co-crystallization of the TDRD2 eTudor with different PIWIL1 peptides, but to no avail. Recombinant antigen-binding fragments (Fabs) have been used to crystallize some difficult proteins in the past, so we generated Fab against the TDRD2 eTudor protein using a phage-display antibody library, and one of these Fab fragments indeed facilitated the co-crystallization of TDRD2 and PIWIL1. Structural analysis of Fab, the TDRD2 eTudor domain in complex with an unmethylated PIWIL1-derived peptide revealed that the PIWIL1 residues G3 through R8 bound between the Tudor core and SN domain of TDRD2. The C-terminal residues of the PIWIL1 peptide were not resolved, presumably due to steric competition with the heavy chain of the Fab. We propose Fab-assisted crystallization as a tool not only for structural studies of single proteins, but also for analysis of interactions between proteins and their ligands in cases where co-crystallization of native protein complexes fails.


Subject(s)
Argonaute Proteins/chemistry , Crystallography, X-Ray/methods , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Tudor Domain , Humans , Ligands , Methylation , Protein Binding , Recombinant Proteins
7.
Environ Sci Pollut Res Int ; 30(18): 51876-51886, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36820965

ABSTRACT

The electrocatalytic reduction of CO2 towards CO is one of the most desirable routines to reduce atmospheric CO2 concentration and maintain a global carbon balance. In this work, a novel porous NiCu-embedded ZIF-derived N-doped carbon nanoparticle (NiCu@NCNPs) catalyst has been identified as an active, highly selective, stable, and cost-effective catalyst in CO2 reduction. A CO selectivity as high as 100% has been achieved on NiCu@NCNPs which is the highest reported to date. The particle current density of CO on NiCu@NCNPs is around 15 mA cm-2 under the optimized potential at -0.9 V vs. RHE. The NiCu@NCNPs electrode also exhibits excellent stability during the five sequential CO2 electroreduction experiments. The superior catalytic performance of NiCu@NCNPs in CO2RR can be related to its microstructure with high electrochemical surface area and low electron transfer resistance. Furthermore, a kinetic analysis has shown the formation of intermediate *COOH is the rate-determining step in CO2RR towards CO. According to the results of density functional theory (DFT) calculations, a low Gibbs-free energy change (∆G) for the rate-determining step leads to the enhanced catalytic performance of CO2RR on NiCu@NCNPs.


Subject(s)
Carbon Dioxide , Carbon , Kinetics , Catalysis , Electrodes
8.
Biochim Biophys Acta Gene Regul Mech ; 1865(2): 194799, 2022 02.
Article in English | MEDLINE | ID: mdl-35182819

ABSTRACT

Discovered two decades ago, Piwi-interacting RNAs (piRNAs) play critical roles in gene regulation, transposon element repression, and antiviral defense. Dysregulation of piRNAs has been noted in diverse human diseases including cancers. Recently, extensive studies have revealed that many more proteins are involved in piRNA biogenesis. This review will summarize the recent progress in piRNA biogenesis and functions, especially the molecular mechanisms by which piRNA biogenesis-related proteins contribute to piRNA processing.


Subject(s)
DNA Transposable Elements , Gene Expression Regulation , DNA Transposable Elements/genetics , Humans , Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
9.
Heliyon ; 8(7): e09873, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35865993

ABSTRACT

BAZ2B is a regulatory subunit of the ISWI (Imitation Switch) remodeling complex and engages in nucleosome remodeling. Loss-of-function and haploinsufficiency of BAZ2B are associated with different diseases. BAZ2B is a large multidomain protein. In addition to the epigenetic reader domains plant homeodomain (PHD) and bromodomain (BRD), BAZ2B also has a Tip5/ARBP/MBD (TAM) domain. Sequence alignment revealed that the TAM domains of BAZ2A and BAZ2B share 53% sequence identity. How the BAZ2A TAM domain bound with DNA has been characterized recently, however, the DNA binding ability and methylation preference, as well as the structural basis of the BAZ2B TAM domain are not studied yet. In this study, we measured the DNA binding affinity of the TAM domain of BAZ2B, and also determined its apo crystal structure. We found that the TAM domains of BAZ2A and BAZ2B adopt almost the same fold, and like BAZ2A, the BAZ2B TAM domain also binds to dsDNA without methyl-cytosine preference, implying that the BAZ2B TAM domain might recognize DNA in a similar binding mode to that of the BAZ2A TAM domain. These results provide clues for the biological function study of BAZ2B in the future.

10.
J Mol Biol ; 434(2): 167404, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34919920

ABSTRACT

13 MBD-containing genes (AtMBD1-13) have been identified in Arabidopsis thaliana so far, however, their DNA binding ability is still controversial. Here, we systematically measured the DNA binding affinities of these MBDs by ITC and EMSA binding assays, except for those of pseudogenes AtMBD3 and AtMBD13, and found that only AtMBD6 and AtMBD7 function as methylated DNA readers. We also found that the MBD of AtMBD5 exhibits very weak binding to methylated DNA compared to that of AtMBD6. To further investigate the structural basis of AtMBDs in binding to methylated DNA, we determined the complex structure of the AtMBD6 MBD with a 12mer mCG DNA and the apo structure of the AtMBD5 MBD. Structural analysis coupled with mutagenesis studies indicated that, in addition to the conserved arginine fingers contributing to the DNA binding specificity, the residues located in the loop1 and α1 are also essential for the methylated DNA binding of these MBDs in Arabidopsis thaliana, which explains why AtMBD5 MBD and the other AtMBDs display very weak or no binding to methylated DNA. Thus, our study here systematically demonstrates the DNA binding ability of the MBDs in Arabidopsis thaliana, which also provides a general guideline in understanding the DNA binding ability of the MBDs in other plants as a whole.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Arabidopsis Proteins/chemistry , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/chemistry
11.
FEBS J ; 288(17): 5089-5121, 2021 09.
Article in English | MEDLINE | ID: mdl-33400393

ABSTRACT

Coronaviruses (CoVs) are positive single-stranded RNA viruses that cause severe respiratory syndromes in humans, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome CoV (SARS-CoV-2) at the end of 2019 became a global pandemic. The 3C-like cysteine protease (3CLpro) processes viral polyproteins to yield mature non-structural proteins, thus playing an important role in the CoV life cycle, and therefore is considered as a prominent target for antiviral drugs. To date, many 3CLpro inhibitors have been reported, and their molecular mechanisms have been illustrated. Here, we briefly introduce the structural features of 3CLpro of the human-related SARS-CoV, MERS-CoV and SARS-CoV-2, and explore the potency and mechanism of their cognate inhibitors. This information will shed light on the development and optimization of CoV 3CLpro inhibitors, which may benefit the further designation of therapeutic strategies for treating CoV diseases.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/genetics , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/enzymology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans , Molecular Targeted Therapy , Pandemics , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins
12.
Chem Commun (Camb) ; 57(60): 7418-7421, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34231569

ABSTRACT

This study presents a facile treatment to modify the commercial irregular shaped polycrystalline Pb into well-defined octahedral Pb with unique Pb(111) facets. Efficient, selective, and stable electrochemical reduction of CO2 toward formate has been achieved on the treated Pb electrode. The faradaic efficiency of formate production from the CO2RR is 98.03%, which is the highest reported to date. The results from the combination of theoretical calculations and experimental tests demonstrate that the enhanced catalytic performance on the treated Pb electrode stems from the electrode morphology characterized by a unique Pb(111) surface with lower Gibbs free energies (ΔG) for the formation of intermediate OCHO*.

13.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194409, 2019 09.
Article in English | MEDLINE | ID: mdl-31356990

ABSTRACT

MeCP2 is an abundant protein, involved in transcriptional repression by binding to CG and non-CG methylated DNA. However, MeCP2 might also function as a transcription activator as MeCP2 is found bound to sparsely methylated promoters of actively expressed genes. Furthermore, Attachment Region Binding Protein (ARBP), the chicken ortholog of MeCP2, has been reported to bind to Matrix/scaffold attachment regions (MARs/SARs) DNA with an unmethylated 5'-CAC/GTG-3' consensus sequence. In our previous study, although we have systemically measured the binding abilities of MBDs to unmethylated CAC/GTG DNA and the complex structures reveal that the MBD2-MBD (MBD of MBD2) binds to the unmethylated CAC/GTG DNA by recognizing the complementary GTG trinucleotide, how the MeCP2-MBD (MBD of MeCP2) recognizes the unmethylated CAC/GTG DNA, especially the MARs DNA, is still unclear. In this study, we investigated the binding characteristics of MeCP2 in recognizing unmethylated 5'-CAC/GTG-3' motif containing DNA by binding and structural studies. We found that MeCP2-MBD binds to MARs DNA with a comparable binding affinity to mCG DNA, and the MeCP2-CAC/GTG complex structure revealed that MeCP2 residues R111 and R133 form base-specific interactions with the GTG motif. For comparison, we also determined crystal structures of the MeCP2-MBD bound to mCG and mCAC/GTG DNA, respectively. Together, these crystal structures illustrate the adaptability of the MeCP2-MBD toward the GTG motif as well as the mCG DNA, and also provide structural basis of a biological role of MeCP2 as a transcription activator and its disease implications in Rett syndrome.


Subject(s)
DNA Methylation/genetics , DNA/chemistry , Methyl-CpG-Binding Protein 2/chemistry , Transcription Factors/chemistry , Animals , Binding Sites , Crystallography, X-Ray , DNA/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Matrix Attachment Region Binding Proteins/genetics , Methyl-CpG-Binding Protein 2/genetics , Nucleotide Motifs/genetics , Promoter Regions, Genetic , Protein Binding/genetics , Protein Conformation , Protein Domains/genetics , Rett Syndrome/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL