Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 133: 108544, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36646339

ABSTRACT

Aquatic viruses can spread rapidly and widely in seawater for their high infective ability. Polyinosinic-polycytidylic acid (Poly I:C), a viral dsRNA analog, is an immunostimulant that has been proved to activate various immune responses of immune cells in invertebrate. Hemolymph is a critical site that host immune response in invertebrates, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by Poly I:C is crucial for understanding the antiviral molecular mechanisms of this species. In this study, we analyzed gene expression data in A. fangsiao hemolymph tissue within 24 h under Poly I:C stimulation and found 1082 and 299 differentially expressed genes (DEGs) at 6 and 24 h, respectively. Union set (1,369) DEGs were selected for subsequent analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out for identifying DEGs related to immunity. Several significant immune-related terms and pathways, such as toll-like receptor signaling pathways term, inflammatory response term, TNF signaling pathway, and chemokine signaling pathway were identified. A protein-protein interaction (PPI) network was constructed for examining the relationships among immune-related genes. Finally, 12 hub genes, including EGFR, ACTG1, MAP2K1, and other nine hub genes, were identified based on the KEGG enrichment analysis and PPI network. The quantitative RT-PCR (qRT-PCR) was used to verify the expression profile of 12 hub genes. This research provides a reference for solving the problem of high mortality of A. fangsiao and other mollusks and provides a reference for the future production of some disease-resistant A. fangsiao.


Subject(s)
Gene Expression Profiling , Poly I-C , Animals , Poly I-C/pharmacology , Hemolymph , Transcriptome , Immunity , Computational Biology
2.
Fish Shellfish Immunol ; 124: 430-441, 2022 May.
Article in English | MEDLINE | ID: mdl-35472401

ABSTRACT

Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum. In this study, V. anguillarum was used to infect the primary hatching A. fangsiao larvae under different egg-protecting behaviors for 24 h, and a total of 7156 differentially expressed genes (DEGs) were identified at four time points after hatching based on transcriptome analysis. GO and KEGG enrichment analyses showed that multiple immune-related GO terms and KEGG signaling pathways were enriched. Protein-protein interaction networks (PPI networks) were used to search functional relationships between immune-related DEGs. Finally, 20 hub genes related to multiple gene functions or involved in multiple signaling pathways were identified, and their accuracy was verified using quantitative RT-PCR. PPI networks were first used to study the effects A. fangsiao larvae after infection with V. anguillarum under different egg-protecting behaviors. The results provide significant genetic resources for exploring invertebrate larval immune processes. The data lays a foundation for further study the immune response mechanisms for invertebrates after infection.


Subject(s)
Fish Diseases , Octopodiformes , Vibrio Infections , Animals , Gene Expression Profiling/veterinary , Immunity , Larva/genetics , Octopodiformes/genetics , Transcriptome , Vibrio
3.
Animals (Basel) ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38200810

ABSTRACT

The primary influencer of aquaculture quality in Amphioctopus fangsiao is pathogen infection. Both lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (Poly I:C) are recognized by the pattern recognition receptor (PRR) within immune cells, a system that frequently serves to emulate pathogen invasion. Hemolymph, which functions as a transport mechanism for immune cells, offers vital transcriptome information when A. fangsiao is exposed to pathogens, thereby contributing to our comprehension of the species' immune biological mechanisms. In this study, we conducted analyses of transcript profiles under the influence of LPS and Poly I:C within a 24 h period. Concurrently, we developed a Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules and genes. Further, we carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the primary modular functions. Co-expression network analyses unveiled a series of immune response processes following pathogen stress, identifying several key modules and hub genes, including PKMYT1 and NAMPT. The invaluable genetic resources provided by our results aid our understanding of the immune response in A. fangsiao hemolymph and will further our exploration of the molecular mechanisms of pathogen infection in mollusks.

4.
Front Immunol ; 13: 963931, 2022.
Article in English | MEDLINE | ID: mdl-36211441

ABSTRACT

Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.


Subject(s)
Sepia , Animals , Cadmium/toxicity , Copper , Decapodiformes/genetics , Gene Expression Profiling , Immunity/genetics , Sepia/genetics , Transcriptome
5.
Dev Comp Immunol ; 136: 104509, 2022 11.
Article in English | MEDLINE | ID: mdl-35963309

ABSTRACT

Gram-negative bacteria are significant pathogens in the ocean, posing serious threats to marine organisms. Lipopolysaccharide (LPS) is a characteristic chemical constituent in Gram-negative bacteria that can be recognized by the pattern recognition receptor (PRR) of immune cells. This system is often used to simulate the invasion of bacteria. Blood is a transport channel for immune cells, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by LPS is essential for understanding the antibacterial biological mechanisms of this species. In this study, we analyzed the gene expression profiles of A. fangsiao blood within 24h under LPS stress and found 778 and 561 differentially expressed genes (DEGs) at 6 and 24h, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to search for immune-related DEGs. The relationships among immune genes were examined by constructing a protein-protein interaction (PPI) network. Finally, 16 hub genes were identified based on the PPI network and KEGG enrichment analysis. The expression profiles of these genes were verified using quantitative RT-PCR (qRT-PCR). This research provides valuable resources for the healthy culture of A. fangsiao and helps us understand the molecular mechanisms of innate immunity.


Subject(s)
Gene Expression Profiling , Lipopolysaccharides , Animals , Computational Biology , Gene Ontology , Gene Regulatory Networks , Immunity, Innate/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL