Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(5): 1102-1114.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442403

ABSTRACT

Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.


Subject(s)
Caloric Restriction , Monocytes/metabolism , AMP-Activated Protein Kinases/metabolism , Adult , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Chemokine CCL2/deficiency , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Female , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , PPAR alpha/deficiency , PPAR alpha/genetics , PPAR alpha/metabolism
2.
Mol Cell ; 83(6): 819-823, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931251

ABSTRACT

Much more than the "powerhouse" of the cell, mitochondria have emerged as critical hubs involved in metabolism, cell death, inflammation, signaling, and stress responses. To open our mitochondria focus issue, we asked several scientists to share the unanswered questions, emerging themes, and topics of investigation that excite them.


Subject(s)
Mitochondria , Signal Transduction , Humans , Mitochondria/metabolism , Cell Death , Inflammation/metabolism
3.
Cell ; 148(5): 988-1000, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22385963

ABSTRACT

Mitochondria are functionally and physically associated with heterotypic membranes, yet little is known about how these interactions impact mitochondrial outer-membrane permeabilization (MOMP) and apoptosis. We observed that dissociation of heterotypic membranes from mitochondria inhibited BAK/BAX-dependent cytochrome c (cyto c) release. Biochemical purification of neutral sphingomyelinases that correlated with MOMP sensitization suggested that sphingolipid metabolism coordinates BAK/BAX activation. Using purified lipids and enzymes, sensitivity to MOMP was achieved by in vitro reconstitution of the sphingolipid metabolic pathway. Sphingolipid metabolism inhibitors blocked MOMP from heavy membrane preparations but failed to influence MOMP in the presence of sphingolipid-reconstituted, purified mitochondria. Furthermore, the sphingolipid products, sphingosine-1-PO(4) and hexadecenal, cooperated specifically with BAK and BAX, respectively. Sphingolipid metabolism was also required for cellular responses to apoptosis. Our studies suggest that BAK/BAX activation and apoptosis are coordinated through BH3-only proteins and a specific lipid milieu that is maintained by heterotypic membrane-mitochondrial interactions.


Subject(s)
Apoptosis , Metabolic Networks and Pathways , Mitochondria/metabolism , Sphingolipids/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Female , HeLa Cells , Humans , Liver/cytology , Mice , Mice, Inbred C57BL , Mitochondrial Membranes/metabolism , Sphingomyelin Phosphodiesterase/metabolism
4.
Mol Cell ; 73(2): 197-198, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30658108

ABSTRACT

In this issue of Molecular Cell, Cho et al. (2019) identify a mechanism by which the mitochondrial division machinery provides selective pressure to identify dysfunctional organelles through the coordinated action of DRP1, Zip1, and Zn2+ transport into mitochondria.


Subject(s)
Mitochondria , Zinc , Mitochondrial Dynamics
5.
Mol Cell ; 74(3): 452-465.e7, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30879903

ABSTRACT

Signaling diversity and subsequent complexity in higher eukaryotes is partially explained by one gene encoding a polypeptide with multiple biochemical functions in different cellular contexts. For example, mouse double minute 2 (MDM2) is functionally characterized as both an oncogene and a tumor suppressor, yet this dual classification confounds the cell biology and clinical literatures. Identified via complementary biochemical, organellar, and cellular approaches, we report that MDM2 negatively regulates NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1), leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis. MDM2 directly binds and sequesters NDUFS1, preventing its mitochondrial localization and ultimately causing complex I and supercomplex destabilization and inefficiency of oxidative phosphorylation. The MDM2 amino-terminal region is sufficient to bind NDUFS1, alter supercomplex assembly, and induce apoptosis. Finally, this pathway is independent of p53, and several mitochondrial phenotypes are observed in Drosophila and murine models expressing transgenic Mdm2.


Subject(s)
Mitochondria/metabolism , NADH Dehydrogenase/genetics , Oxidative Stress/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/genetics , A549 Cells , Animals , Apoptosis/genetics , Cell Respiration/genetics , Cytosol/metabolism , Drosophila melanogaster/genetics , Electron Transport Complex I/genetics , Humans , Mice , Mice, Transgenic , Mitochondria/genetics , Signal Transduction/genetics
6.
J Cell Physiol ; : e31441, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324415

ABSTRACT

Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.

7.
Nature ; 546(7656): 158-161, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28538737

ABSTRACT

Effective adaptive immune responses require a large repertoire of naive T cells that migrate throughout the body, rapidly identifying almost any foreign peptide. Because the production of T cells declines with age, naive T cells must be long-lived. However, it remains unclear how naive T cells survive for years while constantly travelling. The chemoattractant sphingosine 1-phosphate (S1P) guides T cell circulation among secondary lymphoid organs, including spleen, lymph nodes and Peyer's patches, where T cells search for antigens. The concentration of S1P is higher in circulatory fluids than in lymphoid organs, and the S1P1 receptor (S1P1R) directs the exit of T cells from the spleen into blood, and from lymph nodes and Peyer's patches into lymph. Here we show that S1P is essential not only for the circulation of naive T cells, but also for their survival. Using transgenic mouse models, we demonstrate that lymphatic endothelial cells support the survival of T cells by secreting S1P via the transporter SPNS2, that this S1P signals through S1P1R on T cells, and that the requirement for S1P1R is independent of the established role of the receptor in guiding exit from lymph nodes. S1P signalling maintains the mitochondrial content of naive T cells, providing cells with the energy to continue their constant migration. The S1P signalling pathway is being targeted therapeutically to inhibit autoreactive T cell trafficking, and these findings suggest that it may be possible simultaneously to target autoreactive or malignant cell survival.


Subject(s)
Endothelial Cells/metabolism , Lymphoid Tissue/cytology , Lysophospholipids/metabolism , Mitochondria/metabolism , Sphingosine/analogs & derivatives , T-Lymphocytes/cytology , Animals , Anion Transport Proteins/metabolism , Cell Movement , Cell Survival , Female , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphoid Tissue/immunology , Male , Mice , Mice, Transgenic , Peyer's Patches/cytology , Peyer's Patches/immunology , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Sphingosine/metabolism , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology
8.
Mol Cell ; 59(4): 677-84, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26236013

ABSTRACT

The cytosolic fraction of the tumor suppressor p53 activates the apoptotic effector protein BAX to trigger apoptosis. Here we report that p53 activates BAX through a mechanism different from that associated with activation by BH3 only proteins (BIM and BID). We observed that cis-trans isomerization of proline 47 (Pro47) within p53, an inherently rare molecular event, was required for BAX activation. The prolyl isomerase Pin1 enhanced p53-dependent BAX activation by catalyzing cis-trans interconversion of p53 Pro47. Our results reveal a signaling mechanism whereby proline cis-trans isomerization in one protein triggers conformational and functional changes in a downstream signaling partner. Activation of BAX through the concerted action of cytosolic p53 and Pin1 may integrate cell stress signals to induce a direct apoptotic response.


Subject(s)
Apoptosis , Peptidylprolyl Isomerase/physiology , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , Cell Line, Tumor , Humans , Kinetics , NIMA-Interacting Peptidylprolyl Isomerase , Proline/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Stereoisomerism , Tumor Suppressor Protein p53/chemistry , bcl-2-Associated X Protein/chemistry
9.
Mol Cell ; 57(1): 69-82, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25482509

ABSTRACT

Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis.


Subject(s)
GTP Phosphohydrolases/genetics , Mitochondria, Liver/genetics , Mitochondrial Membranes/metabolism , Organelle Shape/genetics , bcl-2-Associated X Protein/genetics , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Membrane Potential, Mitochondrial/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria, Liver/metabolism , Mitochondria, Liver/ultrastructure , Mitochondrial Dynamics/genetics , Mitochondrial Membranes/ultrastructure , Permeability , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
10.
Mol Cell ; 57(3): 521-36, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25658204

ABSTRACT

Mitochondrial division is essential for mitosis and metazoan development, but a mechanistic role in cancer biology remains unknown. Here, we examine the direct effects of oncogenic RAS(G12V)-mediated cellular transformation on the mitochondrial dynamics machinery and observe a positive selection for dynamin-related protein 1 (DRP1), a protein required for mitochondrial network division. Loss of DRP1 prevents RAS(G12V)-induced mitochondrial dysfunction and renders cells resistant to transformation. Conversely, in human tumor cell lines with activating MAPK mutations, inhibition of these signals leads to robust mitochondrial network reprogramming initiated by DRP1 loss resulting in mitochondrial hyper-fusion and increased mitochondrial metabolism. These phenotypes are mechanistically linked by ERK1/2 phosphorylation of DRP1 serine 616; DRP1(S616) phosphorylation is sufficient to phenocopy transformation-induced mitochondrial dysfunction, and DRP1(S616) phosphorylation status dichotomizes BRAF(WT) from BRAF(V600E)-positive lesions. These findings implicate mitochondrial division and DRP1 as crucial regulators of transformation with leverage in chemotherapeutic success.


Subject(s)
Cell Transformation, Neoplastic/genetics , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , ras Proteins/metabolism , Animals , Cell Line, Tumor , Dynamins/genetics , GTP Phosphohydrolases/genetics , HT29 Cells , Humans , MAP Kinase Signaling System/drug effects , Mice , Microtubule-Associated Proteins/genetics , Mitochondrial Proteins/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Serine/metabolism , ras Proteins/genetics
11.
Nat Chem Biol ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531973
12.
Immunity ; 36(6): 1031-46, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22749353

ABSTRACT

GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103(+) DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103(+) and CD11b(+) DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8(+) T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8(+) T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo.


Subject(s)
Cytokine Receptor Common beta Subunit/physiology , Dendritic Cells/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Inflammation/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Lineage , Cytokine Receptor Common beta Subunit/antagonists & inhibitors , Cytokine Receptor Common beta Subunit/deficiency , Cytokine Receptor Common beta Subunit/genetics , Dendritic Cells/classification , Dendritic Cells/cytology , Encephalomyelitis, Autoimmune, Experimental/immunology , Endotoxemia/immunology , Gene Expression Profiling , Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Homeostasis , Lipopolysaccharides/toxicity , Listeriosis/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/transplantation , Organ Specificity , Orthomyxoviridae Infections/immunology , Pneumococcal Infections/immunology , Radiation Chimera , Spleen/immunology , Tamoxifen/pharmacology
13.
J Immunol ; 202(2): 460-475, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30552164

ABSTRACT

Aging of established antiviral T cell memory can foster a series of progressive adaptations that paradoxically improve rather than compromise protective CD8+ T cell immunity. We now provide evidence that this gradual evolution, the pace of which is contingent on the precise context of the primary response, also impinges on the molecular mechanisms that regulate CD8+ memory T cell (TM) homeostasis. Over time, CD8+ TM generated in the wake of an acute infection with the natural murine pathogen lymphocytic choriomeningitis virus become more resistant to apoptosis and acquire enhanced cytokine responsiveness without adjusting their homeostatic proliferation rates; concurrent metabolic adaptations promote increased CD8+ TM quiescence and fitness but also impart the reacquisition of a partial effector-like metabolic profile; and a gradual redistribution of aging CD8+ TM from blood and nonlymphoid tissues to lymphatic organs results in CD8+ TM accumulations in bone marrow, splenic white pulp, and, particularly, lymph nodes. Altogether, these data demonstrate how temporal alterations of fundamental homeostatic determinants converge to render aged CD8+ TM poised for greater recall responses.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/physiology , Immunologic Memory/immunology , Lymph Nodes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Animals , Antigens, Viral/immunology , Cell Movement , Cell Survival , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics
15.
J Biol Chem ; 292(28): 11727-11739, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28546431

ABSTRACT

The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAFV600E), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAFV600E is pharmacologically inhibited by targeted therapies (e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAFV600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.


Subject(s)
Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Electron Transport Complex II/antagonists & inhibitors , Electron Transport Complex I/antagonists & inhibitors , Lignans/pharmacology , Mitochondria/drug effects , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , CDC2 Protein Kinase , Cell Line, Tumor , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , G1 Phase/drug effects , Humans , MAP Kinase Signaling System/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/enzymology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Oxidative Phosphorylation/drug effects , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Uncoupling Agents/pharmacology
16.
Mol Cell ; 37(3): 299-310, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20159550

ABSTRACT

B cell CLL/lymphoma-2 (BCL-2) and its relatives comprise the BCL-2 family of proteins, which were originally characterized with respect to their roles in controlling outer mitochondrial membrane integrity and apoptosis. Current observations expand BCL-2 family function to include numerous cellular pathways. Here we will discuss the mechanisms and functions of the BCL-2 family in the context of these pathways, highlighting the complex integration and regulation of the BCL-2 family in cell fate decisions.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/physiology , Amino Acid Sequence , Apoptosis , Autophagy , Endoplasmic Reticulum/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Models, Biological , Molecular Sequence Data , Multigene Family , Permeability , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Sequence Alignment , Signal Transduction
17.
Cell Mol Life Sci ; 74(11): 1999-2017, 2017 06.
Article in English | MEDLINE | ID: mdl-28083595

ABSTRACT

Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.


Subject(s)
Mitochondrial Dynamics , Neoplasms/metabolism , Animals , Humans , Membrane Fusion , Mitochondrial Membranes/metabolism , Neoplasm Metastasis , Neoplasms/pathology , Signal Transduction
18.
EMBO Rep ; 16(9): 1164-76, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26209246

ABSTRACT

Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3(-/-) HSC that are defective in their activity. We show that Foxo3(-/-) HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3(-/-) hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3(-/-) HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells.


Subject(s)
Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hematopoietic Stem Cells/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Aging/genetics , Animals , Forkhead Box Protein O3 , Homeostasis/genetics , Homeostasis/physiology , Mice , Mitochondria/genetics , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism
19.
Handb Exp Pharmacol ; 240: 159-188, 2017.
Article in English | MEDLINE | ID: mdl-28040850

ABSTRACT

Mitochondria are an essential component of multicellular life - from primitive organisms, to highly complex entities like mammals. The importance of mitochondria is underlined by their plethora of well-characterized essential functions such as energy production through oxidative phosphorylation (OX-PHOS), calcium and reactive oxygen species (ROS) signaling, and regulation of apoptosis. In addition, novel roles and attributes of mitochondria are coming into focus through the recent years of mitochondrial research. In particular, over the past decade the study of mitochondrial shape and dynamics has achieved special significance, as they are found to impact mitochondrial function. Recent advances indicate that mitochondrial function and dynamics are inter-connected, and maintain the balance between health and disease at a cellular and an organismal level. For example, excessive mitochondrial division (fission) is associated with functional defects, and is implicated in multiple human diseases from neurodegenerative diseases to cancer. In this chapter we examine the recent literature on the mitochondrial dynamics-function relationship, and explore how it impacts on the development and progression of human diseases. We will also highlight the implications of therapeutic manipulation of mitochondrial dynamics in treating various human pathologies.


Subject(s)
Mitochondrial Dynamics/physiology , Animals , Disease Models, Animal , Dynamins , GTP Phosphohydrolases/physiology , Humans , Mice , Microtubule-Associated Proteins/physiology , Mitochondria/physiology , Mitochondrial Proteins/physiology , Neurodegenerative Diseases/etiology
20.
Proc Natl Acad Sci U S A ; 111(23): 8434-9, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24912152

ABSTRACT

Lysine 48 (K48)-polyubiquitination is the predominant mechanism for mediating selective protein degradation, but the underlying molecular basis of selecting ubiquitin (Ub) K48 for linkage-specific chain synthesis remains elusive. Here, we present biochemical, structural, and cell-based evidence demonstrating a pivotal role for the Ub Y59-E51 loop in supporting K48-polyubiquitination. This loop is established by a hydrogen bond between Ub Y59's hydroxyl group and the backbone amide of Ub E51, as substantiated by NMR spectroscopic analysis. Loop residues Y59 and R54 are specifically required for the receptor activity enabling K48 to attack the donor Ub-E2 thiol ester in reconstituted ubiquitination catalyzed by Skp1-Cullin1-F-box (SCF)(ßTrCP) E3 ligase and Cdc34 E2-conjugating enzyme. When introduced into mammalian cells, loop-disruptive mutant Ub(R54A/Y59A) diminished the production of K48-polyubiquitin chains. Importantly, conditional replacement of human endogenous Ub by Ub(R54A/Y59A) or Ub(K48R) yielded profound apoptosis at a similar extent, underscoring the global impact of the Ub Y59-E51 loop in cellular K48-polyubiquitination. Finally, disulfide cross-linking revealed interactions between the donor Ub-bound Cdc34 acidic loop and the Ub K48 site, as well as residues within the Y59-E51 loop, suggesting a mechanism in which the Ub Y59-E51 loop helps recruit the E2 acidic loop that aligns the receptor Ub K48 to the donor Ub for catalysis.


Subject(s)
Lysine/metabolism , Polyubiquitin/metabolism , Ubiquitin/metabolism , Ubiquitination , Amino Acid Sequence , Amino Acid Substitution , Apoptosis/genetics , Biocatalysis , Cell Line, Tumor , HEK293 Cells , Humans , Hydrogen Bonding , Immunoblotting , Lysine/chemistry , Lysine/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Mutation , Polyubiquitin/genetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA Interference , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL