Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.017
Filter
Add more filters

Publication year range
1.
Genes Dev ; 37(21-24): 984-997, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-37993255

ABSTRACT

The RING-type E3 ligase has been known for over two decades, yet its diverse modes of action are still the subject of active research. Plant homeodomain (PHD) finger protein 7 (PHF7) is a RING-type E3 ubiquitin ligase responsible for histone ubiquitination. PHF7 comprises three zinc finger domains: an extended PHD (ePHD), a RING domain, and a PHD. While the function of the RING domain is largely understood, the roles of the other two domains in E3 ligase activity remain elusive. Here, we present the crystal structure of PHF7 in complex with the E2 ubiquitin-conjugating enzyme (E2). Our structure shows that E2 is effectively captured between the RING domain and the C-terminal PHD, facilitating E2 recruitment through direct contact. In addition, through in vitro binding and functional assays, we demonstrate that the N-terminal ePHD recognizes the nucleosome via DNA binding, whereas the C-terminal PHD is involved in histone H3 recognition. Our results provide a molecular basis for the E3 ligase activity of PHF7 and uncover the specific yet collaborative contributions of each domain to the PHF7 ubiquitination activity.


Subject(s)
Histones , Ubiquitin-Protein Ligases , Histones/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , DNA-Binding Proteins/metabolism , Zinc Fingers , Ubiquitin-Conjugating Enzymes/metabolism
2.
Immunity ; 54(1): 44-52.e3, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33338412

ABSTRACT

Memory T cell responses have been demonstrated in COVID-19 convalescents, but ex vivo phenotypes of SARS-CoV-2-specific T cells have been unclear. We detected SARS-CoV-2-specific CD8+ T cells by MHC class I multimer staining and examined their phenotypes and functions in acute and convalescent COVID-19. Multimer+ cells exhibited early differentiated effector-memory phenotypes in the early convalescent phase. The frequency of stem-like memory cells was increased among multimer+ cells in the late convalescent phase. Cytokine secretion assays combined with MHC class I multimer staining revealed that the proportion of interferon-γ (IFN-γ)-producing cells was significantly lower among SARS-CoV-2-specific CD8+ T cells than those specific to influenza A virus. Importantly, the proportion of IFN-γ-producing cells was higher in PD-1+ cells than PD-1- cells among multimer+ cells, indicating that PD-1-expressing, SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional. Our current findings provide information for understanding of SARS-CoV-2-specific CD8+ T cells elicited by infection or vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2/immunology , Acute-Phase Reaction/immunology , Acute-Phase Reaction/virology , COVID-19/pathology , COVID-19/virology , Convalescence , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/immunology , Humans , Immunologic Memory , Immunophenotyping , Interferon-gamma/metabolism , Lymphocyte Activation , Viral Load
3.
J Immunol ; 213(3): 384-393, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38864663

ABSTRACT

Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.


Subject(s)
Dendritic Cells , Endoplasmic Reticulum Stress , Endoribonucleases , Graft vs Host Disease , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Mice , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Mice, Knockout , Mice, Inbred C57BL , Hematopoietic Stem Cell Transplantation , Bone Marrow Transplantation , Signal Transduction , Cell Differentiation/immunology , Graft vs Leukemia Effect/immunology
4.
J Immunol ; 210(4): 486-495, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36548465

ABSTRACT

The gastrointestinal (GI) tract is a frequent target organ in acute graft-versus-host disease (aGVHD), which can determine the morbidity and nonrelapse mortality after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells recognize allogeneic Ags presented by host APCs, proliferate, and differentiate into Th1 and Th17 cells that drive GVHD pathogenesis. IL-12 has been shown to play an important role in amplifying the allogeneic response in preclinical and clinical studies. This study demonstrates that IL-12Rß2 expression on recipient nonhematopoietic cells is required for optimal development of aGVHD in murine models of allo-HCT. aGVHD attenuation by genetic depletion of IL-12R signaling is associated with reduced MHC class II expression by intestinal epithelial cells and maintenance of intestinal integrity. We verified IL-12Rß2 expression on activated T cells and in the GI tract. This study, to our knowledge, reveals a novel function of IL-12Rß2 in GVHD pathogenesis and suggests that selectively targeting IL-12Rß2 on host nonhematopoietic cells may preserve the GI tract after allo-HCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Mice , Acute Disease , Bone Marrow Transplantation , Graft vs Host Disease/genetics , Intestines/pathology , Transplantation, Homologous
5.
Am J Pathol ; 193(7): 866-882, 2023 07.
Article in English | MEDLINE | ID: mdl-37024046

ABSTRACT

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.


Subject(s)
COVID-19 , Mice , Humans , Animals , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/metabolism , Mice, Transgenic , Disease Susceptibility , Antigen-Presenting Cells , Disease Models, Animal , Lung/metabolism
6.
Opt Express ; 32(2): 2631-2643, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297787

ABSTRACT

Among various specifications of near eye display (NED) devices, a compact formfactor is essential for comfortable user experience but also the hardest one to accomplish due to the slowest progresses. A pinhole/pinlight array based light-field (LF) technique is considered as one of the candidates to achieve that goal without thicker and heavier refractive optics. Despite those promising advantages, however, there are critical issues, such as dark spots and contrast distortion, which degrade the image quality because of the vulnerability of the LF retinal image when the observer's eye pupil size changes. Regardless of previous attempts to overcome those artifacts, it was impossible to resolve both issues due to their trade-off relation. In this paper, in order to resolve them simultaneously, we propose a concept of multiplexed retinal projections to integrate the LF retinal image through rotating transitions of refined and modulated elemental images for robust compensation of eye pupil variance with improved conservation of contrast distribution. Experimental demonstrations and quantitative analysis are also provided to verify the principle.


Subject(s)
Pupil , Retina , Refraction, Ocular , Optics and Photonics , Photic Stimulation
7.
Nat Chem Biol ; 18(7): 713-723, 2022 07.
Article in English | MEDLINE | ID: mdl-35484435

ABSTRACT

Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.


Subject(s)
Glucose Transport Proteins, Facilitative , Lipid Bilayers , Animals , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 3/metabolism , Humans , Lipid Bilayers/chemistry , Membrane Proteins/metabolism , Protein Folding , Protein Structure, Secondary
8.
Xenotransplantation ; 31(2): exen12855, 2024.
Article in English | MEDLINE | ID: mdl-38602029

ABSTRACT

Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.


Subject(s)
Sialyltransferases , Transplantation, Heterologous , beta-Galactoside alpha-2,3-Sialyltransferase , Animals , Humans , Antigens, Viral, Tumor , Carbohydrates , Mammals/metabolism , Sialyltransferases/genetics , Sialyltransferases/chemistry , Sialyltransferases/metabolism , Swine
9.
Eur Spine J ; 33(7): 2713-2720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878173

ABSTRACT

PURPOSE: To evaluate the actual change in clinical hip pain and hip migration after operation for non-ambulatory flaccid neuromuscular (NM) scoliosis and investigate whether there is an association between hip migration and coronal/sagittal pelvic tilt (CO-PT/SA-PT). PATIENTS AND METHODS: This retrospective, single-center, observational study evaluated a total of 134 patients with non-ambulatory flaccid neuromuscular scoliosis who underwent surgery performed by a single surgeon between 2003 and 2020, with at least 2 years of follow-up period. Operation procedures were conducted in two stages, beginning with L5-S1 anterior release followed by posterior fixation. Radiologic parameters were measured at preoperative, immediate postoperative, and last follow-up periods with clinical hip pain and clinical hip dislocation events. RESULTS: The significant improvements occurred in various parameters after correction surgery for NM scoliosis, containing Cobb's angle of major curve and CO-PT. However, Reimer's hip migration percentage (RMP) was increased on both side of hip (High side, 0.23 ± 0.16 to 0.28 ± 0.21; Low side, 0.20 ± 0.14 to 0.23 ± 0.18). Hip pain and dislocation events were also increased (Visual analog scale score, 2.5 ± 2.3 to 3.6 ± 2.6, P value < 0.05; dislocation, 6-12). Logistic regression analysis of the interactions between ΔRMP(High) and the change of sagittal pelvic tilt (ΔSA-PT) after correction reveals a significant negative association. (95% CI 1.003-1.045, P value = 0.0226). CONCLUSIONS: In cases of non-ambulatory flaccid NM scoliosis, clinical hip pain, and subluxation continued to deteriorate even after correction of CO-PT. There was a relationship between the decrease in SA-PT, and an increase in hip migration percentage on high side, indicating the aggravation of hip subluxation.


Subject(s)
Hip Dislocation , Scoliosis , Humans , Scoliosis/surgery , Female , Male , Retrospective Studies , Adolescent , Hip Dislocation/surgery , Hip Dislocation/etiology , Hip Dislocation/diagnostic imaging , Child , Spinal Fusion/methods , Young Adult
10.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34266952

ABSTRACT

The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Gene Expression Regulation, Plant , Germ Cells, Plant/enzymology , Meristem/enzymology , N-Glycosyl Hydrolases/metabolism , Trans-Activators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cell Differentiation , Cell Proliferation , Germ Cells, Plant/cytology , Meristem/genetics , Meristem/growth & development , N-Glycosyl Hydrolases/genetics , Trans-Activators/genetics
11.
J Korean Med Sci ; 39(22): e186, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859743

ABSTRACT

Herein, we report a case of uncomplicated falciparum malaria with late parasitological failure in a 45-year-old businessman returning from Ghana. The patient visited the emergency department with high fever, headache, and dizziness. He traveled without antimalarial chemoprophylaxis. Laboratory tests led to the diagnosis of uncomplicated falciparum malaria with an initial density of 37,669 parasites per µL of blood (p/µL). The patient was treated with intravenous artesunate followed by atovaquone/proguanil. He was discharged with improved condition and decreased parasite density of 887 p/µL. However, at follow-up, parasite density increased to 7,630 p/µL despite the absence of any symptoms. Suspecting treatment failure, the patient was administered intravenous artesunate and doxycycline for seven days and then artemether/lumefantrine for three days. Blood smear was negative for asexual parasitemia after re-treatment but positive for gametocytemia until day 101 from the initial diagnosis. Overall, this case highlights the risk of late parasitological failure in patients with imported uncomplicated falciparum malaria.


Subject(s)
Antimalarials , Atovaquone , Malaria, Falciparum , Plasmodium falciparum , Proguanil , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/diagnosis , Ghana , Antimalarials/therapeutic use , Middle Aged , Male , Plasmodium falciparum/isolation & purification , Proguanil/therapeutic use , Atovaquone/therapeutic use , Travel , Artemisinins/therapeutic use , Artesunate/therapeutic use , Parasitemia/drug therapy , Parasitemia/diagnosis , Doxycycline/therapeutic use , Drug Combinations , Treatment Failure , Artemether, Lumefantrine Drug Combination/therapeutic use
12.
J Korean Med Sci ; 39(14): e134, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622939

ABSTRACT

The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.


Subject(s)
COVID-19 , United States , Humans , SARS-CoV-2 , COVID-19 Vaccines/therapeutic use , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antibodies, Viral , Pharmaceutical Preparations
13.
J Korean Med Sci ; 39(16): e144, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685889

ABSTRACT

BACKGROUND: This study aimed to generate a Z score calculation model for coronary artery diameter of normal children and adolescents to be adopted as the standard calculation method with consensus in clinical practice. METHODS: This study was a retrospective, multicenter study that collected data from multiple institutions across South Korea. Data were analyzed to determine the model that best fit the relationship between the diameter of coronary arteries and independent demographic parameters. Linear, power, logarithmic, exponential, and square root polynomial models were tested for best fit. RESULTS: Data of 2,030 subjects were collected from 16 institutions. Separate calculation models for each sex were developed because the impact of demographic variables on the diameter of coronary arteries differs according to sex. The final model was the polynomial formula with an exponential relationship between the diameter of coronary arteries and body surface area using the DuBois formula. CONCLUSION: A new coronary artery diameter Z score model was developed and is anticipated to be applicable in clinical practice. The new model will help establish a consensus-based Z score model.


Subject(s)
Coronary Vessels , Humans , Female , Male , Retrospective Studies , Coronary Vessels/diagnostic imaging , Coronary Vessels/anatomy & histology , Child , Adolescent , Republic of Korea , Child, Preschool , Sex Factors , Body Surface Area , Infant
14.
J Korean Med Sci ; 39(12): e118, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38565175

ABSTRACT

BACKGROUND: Since the emergence of hypervirulent strains of Clostridioides difficile, the incidence of C. difficile infections (CDI) has increased significantly. METHODS: To assess the incidence of CDI in Korea, we conducted a prospective multicentre observational study from October 2020 to October 2021. Additionally, we calculated the incidence of CDI from mass data obtained from the Health Insurance Review and Assessment Service (HIRA) from 2008 to 2020. RESULTS: In the prospective study with active surveillance, 30,212 patients had diarrhoea and 907 patients were diagnosed with CDI over 1,288,571 patient-days and 193,264 admissions in 18 participating hospitals during 3 months of study period; the CDI per 10,000 patient-days was 7.04 and the CDI per 1,000 admission was 4.69. The incidence of CDI was higher in general hospitals than in tertiary hospitals: 6.38 per 10,000 patient-days (range: 3.25-12.05) and 4.18 per 1,000 admissions (range: 1.92-8.59) in 11 tertiary hospitals, vs. 9.45 per 10,000 patient-days (range: 5.68-13.90) and 6.73 per 1,000 admissions (range: 3.18-15.85) in seven general hospitals. With regard to HIRA data, the incidence of CDI in all hospitals has been increasing over the 13-year-period: from 0.3 to 1.8 per 10,000 patient-days, 0.3 to 1.6 per 1,000 admissions, and 6.9 to 56.9 per 100,000 population, respectively. CONCLUSION: The incidence of CDI in Korea has been gradually increasing, and its recent value is as high as that in the United State and Europe. CDI is underestimated, particularly in general hospitals in Korea.


Subject(s)
Clostridioides difficile , Clostridium Infections , Cross Infection , Humans , Prospective Studies , Incidence , Watchful Waiting , Cross Infection/epidemiology , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Republic of Korea/epidemiology , Tertiary Care Centers , Insurance, Health
15.
J Korean Med Sci ; 39(3): e33, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38258365

ABSTRACT

BACKGROUND: Over the last decade, extracorporeal membrane oxygenation (ECMO) use in critically ill children has increased and is associated with favorable outcomes. Our study aims to evaluate the current status of pediatric ECMO in Korea, with a specific focus on its volume and changes in survival rates based on diagnostic indications. METHODS: This multicenter study retrospectively analyzed the indications and outcomes of pediatric ECMO over 10 years in patients at 14 hospitals in Korea from January 2012 to December 2021. Four diagnostic categories (neonatal respiratory, pediatric respiratory, post-cardiotomy, and cardiac-medical) and trends were compared between periods 1 (2012-2016) and 2 (2017-2021). RESULTS: Overall, 1065 ECMO runs were performed on 1032 patients, with the annual number of cases remaining unchanged over the 10 years. ECMO was most frequently used for post-cardiotomy (42.4%), cardiac-medical (31.8%), pediatric respiratory (17.5%), and neonatal respiratory (8.2%) cases. A 3.7% increase and 6.1% decrease in pediatric respiratory and post-cardiotomy cases, respectively, were noted between periods 1 and 2. Among the four groups, the cardiac-medical group had the highest survival rate (51.2%), followed by the pediatric respiratory (46.4%), post-cardiotomy (36.5%), and neonatal respiratory (29.4%) groups. A consistent improvement was noted in patient survival over the 10 years, with a significant increase between the two periods from 38.2% to 47.1% (P = 0.004). Improvement in survival was evident in post-cardiotomy cases (30-45%, P = 0.002). Significant associations with mortality were observed in neonates, patients requiring dialysis, and those treated with extracorporeal cardiopulmonary resuscitation (P < 0.001). In pediatric respiratory ECMO, immunocompromised patients also showed a significant correlation with mortality (P < 0.001). CONCLUSION: Pediatric ECMO demonstrated a steady increase in overall survival in Korea; however, further efforts are needed since the outcomes remain suboptimal compared with global outcomes.


Subject(s)
Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Infant, Newborn , Humans , Child , Retrospective Studies , Heart , Republic of Korea/epidemiology
16.
Sensors (Basel) ; 24(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475225

ABSTRACT

In this study, we explore how the strategic positioning of conductive yarns influences the performance of plated knit strain sensors fabricated using commercial knitting machines with both conductive and non-conductive yarns. Our study reveals that sensors with conductive yarns located at the rear, referred to as 'purl plated sensors', exhibit superior performance in comparison to those with conductive yarns at the front, or 'knit plated sensors'. Specifically, purl plated sensors demonstrate a higher sensitivity, evidenced by a gauge factor ranging from 3 to 18, and a minimized strain delay, indicated by a 1% strain in their electromechanical response. To elucidate the mechanisms behind these observations, we developed an equivalent circuit model. This model examines the role of contact resistance within varying yarn configurations on the sensors' sensitivity, highlighting the critical influence of contact resistance in conductive yarns subjected to wale-wise stretching on sensor responsiveness. Furthermore, our findings illustrate that the purl plated sensors benefit from the vertical movement of non-conductive yarns, which promotes enhanced contact between adjacent conductive yarns, thereby improving both the stability and sensitivity of the sensors. The practicality of these sensors is confirmed through bending cycle tests with an in situ monitoring system, showcasing the purl plated sensors' exceptional reproducibility, with a standard deviation of 0.015 across 1000 cycles, and their superior sensitivity, making them ideal for wearable devices designed for real-time joint movement monitoring. This research highlights the critical importance of conductive yarn placement in sensor efficacy, providing valuable guidance for crafting advanced textile-based strain sensors.

17.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928244

ABSTRACT

Obesity and metabolic syndrome alter serum lipid profiles. They also increase vulnerability to viral infections and worsen the survival rate and symptoms after infection. How serum lipids affect influenza virus proliferation is unclear. Here, we investigated the effects of lysophosphatidylcholines on influenza A virus (IAV) proliferation. IAV particles in the culture medium were titrated using extraction-free quantitative PCR, and viral RNA and protein levels were assessed using real-time PCR and Western blot, respectively. RNA sequencing data were analyzed using PCA and heatmap analysis, and pathway analysis was performed using the KEGG mapper and PathIN tools. Statistical analysis was conducted using SPSS21.0. LPC treatment of THP-1 cells significantly increased IAV proliferation and IAV RNA and protein levels, and saturated LPC was more active in IAV RNA expression than unsaturated LPC was. The functional analysis of genes affected by LPCs showed that the expression of genes involved in IAV signaling, such as suppressor of cytokine signaling 3 (SOCS3), phosphoinositide-3-kinase regulatory subunit 3 (PI3K) and AKT serine/threonine kinase 3 (AKT3), Toll-like receptor 7 (TKR7), and interferon gamma receptor 1 (IFNGR1), was changed by LPC. Altered influenza A pathways were linked with MAPK and PI3K/AKT signaling. Treatment with inhibitors of MAPK or PI3K attenuated viral gene expression changes induced by LPCs. The present study shows that LPCs stimulated virus reproduction by modifying the cellular environment to one in which viruses proliferated better. This was mediated by the MAPK, JNK, and PI3K/AKT pathways. Further animal studies are needed to confirm the link between LPCs from serum or the respiratory system and IAV proliferation.


Subject(s)
Influenza A virus , Lysophosphatidylcholines , MAP Kinase Signaling System , Virus Replication , Humans , Lysophosphatidylcholines/pharmacology , Lysophosphatidylcholines/metabolism , Virus Replication/drug effects , MAP Kinase Signaling System/drug effects , Influenza A virus/physiology , Macrophages/metabolism , Macrophages/virology , Macrophages/drug effects , THP-1 Cells , Cell Differentiation/drug effects , Influenza, Human/virology , Influenza, Human/metabolism , Signal Transduction/drug effects , Animals
18.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928344

ABSTRACT

The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.


Subject(s)
Hematologic Neoplasms , Neoplastic Stem Cells , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Hematopoietic Stem Cells/metabolism , Leukemia/pathology , Leukemia/genetics , Leukemia/metabolism , Signal Transduction , Animals , Tumor Microenvironment/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Mutation
19.
Chemistry ; 29(61): e202301744, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37537970

ABSTRACT

2H phase tungsten diselenide (WSe2 ) is a p-type 2D semiconductor from the transition metal dichalcogenides (TMDs) family with unique optoelectrical properties. Solution phase production of atomically thin WSe2 is challenging due to its instability under ambient conditions. We present a highly efficient and scalable solution method for simultaneously exfoliating and functionalizing WSe2 by leveraging the non-covalent interaction between mercapto-group and bulk WSe2 . Single and few-layer 2H phase pure WSe2 sheets of lateral size up to 5 µm with minimal basal plane defects, as revealed by XPS, Raman and FTIR spectroscopy, are produced in a water-ethanol mixture. Remarkably, WSe2 dispersion remains stable even at high concentrations (10 mg/mL) and exhibited high colloidal stability with a shelf-life exceeding a year. The findings from our study suggest that through precise manipulation of intercalation chemistry, mass production of solution-processable phase-sensitive 2D materials such as WSe2 can be achieved. This advancement holds great potential for facilitating their practical utilization in various real-world applications.

SELECTION OF CITATIONS
SEARCH DETAIL