Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Mol Cell ; 72(2): 316-327.e5, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340023

ABSTRACT

Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11ß2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened-activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.


Subject(s)
Cilia/drug effects , Cilia/metabolism , Oxysterols/pharmacology , Animals , Cell Line , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Mice , NIH 3T3 Cells , Signal Transduction/drug effects
2.
J Clin Invest ; 128(1): 120-124, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29202464

ABSTRACT

Medulloblastoma, an aggressive cancer of the cerebellum, is among the most common pediatric brain tumors. Approximately one-third of medulloblastomas are associated with misactivation of the Hedgehog (Hh) pathway. GLI family zinc finger 2 (GLI2) coordinates the Hh transcriptional program; however, the GLI2 targets that promote cancer cell proliferation are unknown. Here, we incorporated a Gli2-EGFP allele into 2 different genetic mouse models of Hh-associated medulloblastoma. Hh signaling induced GLI2 binding to the Cdk6 promoter and activated Cdk6 expression, thereby promoting uncontrolled cell proliferation. Genetic or pharmacological inhibition of CDK6 in mice repressed the growth of Hh-associated medulloblastoma and prolonged survival through inhibition of cell proliferation. In human medulloblastoma, misactivation of Hh signaling was associated with high levels of CDK6, pointing to CDK6 as a direct transcriptional target of the Hh pathway. These results suggest that CDK6 antagonists may be a promising therapeutic approach for Hh-associated medulloblastoma in humans.


Subject(s)
Cell Proliferation , Cerebellar Neoplasms/metabolism , Cyclin-Dependent Kinase 6/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Cell Survival , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cyclin-Dependent Kinase 6/genetics , Female , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL