Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Opt Express ; 32(7): 11838-11848, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571022

ABSTRACT

The gate-tunable absorption properties of graphene make it suitable for terahertz (THz) absorbers. However, the realization of a graphene-based THz absorber faces challenges between the difficulty of patterning graphene for processing and the intrinsically low absorbance of graphene with the high electric field needed to change the conductivity of graphene. This report presents an electrically tunable graphene THz absorber where a single-layer graphene film and a gold reflective layer are separated by a polyimide (PI) dielectric layer to form an easily fabricated three-layer Salisbury screen structure. The carrier density of the graphene layer can be efficiently tuned by a small external electrical gating (-5V-5 V) with the assistance of an ion gel layer. The voltage modulation of the Fermi energy level (EF) of graphene was confirmed by Raman spectra, and the variation of the device absorbance was confirmed using a THz time-domain spectroscopy system (THz-TDS). The measurements show that the EF is adjusted in the range of 0-0.5 eV, and THz absorbance is adjusted in the range of 60%-99%. The absorber performs well under different curvatures, and the peak absorbance is all over 95%. We conducted further analysis of the absorber absorbance by varying the thickness of the PI dielectric layer, aiming to examine the correlation between the resonant frequency of the absorber and the dielectric layer thickness. Our research findings indicate that the proposed absorber holds significant potential for application in diverse fields such as communication, medicine, and sensing.

2.
Anal Bioanal Chem ; 416(2): 509-518, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989848

ABSTRACT

The application of standing surface acoustic wave (SSAW) tweezers based on backpropagation superposition to achieve precise behavior manipulation of microscale cells and even nanoscale bacteria has been widely studied and industrialized. However, the structure requires multiple transducer components or full channel resonance. It is very challenging to design a simple structure for nano-control by complex acoustic field. In this study, a reflector-interdigital transducer (R-IDT) acoustofluidic device based on unilateral coherence enhancement is proposed to achieve SSAW definition features of periodic particle capture positions. The SAW device based on a unilateral transducer can not only generate leaky-SAW in water-filled microchannel, but also have a contribution of spherical waves in the vibration area of the substrate-liquid interface due to the Huygens-Fresnel diffractive principle. Both of them form a robust time-averaged spatial periodicity in the pressure potential gradient, accurately predicting the lateral spacing of these positions through acoustic patterning methods. Furthermore, a reflector based on Bragg-reflection is used to suppress backward transmitted SAW and enhance forward conducted SAW beams. By using a finite element model, R-IDT structure's amplitude enhances 60.78% compared to single IDT structure. The particle manipulation range of the diffractive acoustic field greatly improves, verified by experimental polystyrene microspheres. Besides, biocompatibility is conformed through red blood cells and Bacillus subtilis. We investigate the overall shift of periodic pressure field that can still occur when the phase changes. This work provides a simpler and low-cost solution for the application of acoustic tweezer in biological cell culture and filtering.

3.
Sensors (Basel) ; 24(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204983

ABSTRACT

In cross-country skiing, ski poles play a crucial role in technique, propulsion, and overall performance. The kinematic parameters of ski poles can provide valuable information about the skier's technique, which is of great significance for coaches and athletes seeking to improve their skiing performance. In this work, a new smart ski pole is proposed, which combines the uniaxial load cell and the inertial measurement unit (IMU), aiming to provide comprehensive data measurement functions more easily and to play an auxiliary role in training. The ski pole can collect data directly related to skiing technical actions, such as the skier's pole force, pole angle, inertia data, etc., and the system's design, based on wireless transmission, makes the system more convenient to provide comprehensive data acquisition functions, in order to achieve a more simple and efficient use experience. In this experiment, the characteristic data obtained from the ski poles during the Double Poling of three skiers were extracted and the sample t-test was conducted. The results showed that the three skiers had significant differences in pole force, pole angle, and pole time. Spearman correlation analysis was used to analyze the sports data of the people with good performance, and the results showed that the pole force and speed (r = 0.71) and pole support angle (r = 0.76) were significantly correlated. In addition, this study adopted the commonly used inertial sensor data for action recognition, combined with the load cell data as the input of the ski technical action recognition algorithm, and the recognition accuracy of five kinds of cross-country skiing technical actions (Diagonal Stride (DS), Double Poling (DP), Kick Double Poling (KDP), Two-stroke Glide (G2) and Five-stroke Glide (G5)) reached 99.5%, and the accuracy was significantly improved compared with similar recognition systems. Therefore, the equipment is expected to be a valuable training tool for coaches and athletes, helping them to better understand and improve their ski maneuver technique.


Subject(s)
Skiing , Skiing/physiology , Humans , Biomechanical Phenomena/physiology , Pattern Recognition, Automated/methods , Athletic Performance/physiology
4.
Opt Express ; 31(14): 22457-22469, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475356

ABSTRACT

A dual-ring parity-time (PT) symmetric Brillouin fiber laser (BFL) with an unbalanced polarization Mach-Zehnder interferometer (UP-MZI) is proposed and experimentally investigated. An UP-MZI consisting of optical coupler, polarization beam combiner (PBC) and two asymmetric length arms with 10 km and 100 m single-mode fiber, is used to achieve Vernier effect and PT symmetry. Due to the orthogonally polarized lights created in the PBC, the dual-ring PT symmetry BFL with an UP-MZI implements two unbalanced length feedback rings that are connected to one another, one long length ring with a Brillouin gain and the other short length ring with a loss of the same magnitude, to break a PT symmetric and maintain the Vernier effect. By contrast with existing PT symmetry BFL studies, this design does not require same lengths of the gain and loss loops, but can manipulate freely PT symmetry status in accordance with a rational scaling factor between them. Experimental results reveal that the 3-dB linewidth of dual-ring PT symmetry BFL with an UP-MZI is about 4.85 Hz with the threshold input power of 9.5 mW, in accordance with the 97 Hz measured linewidth at the -20 dB power point. Within 60 mins of the stability experiment, the power and frequency stability fluctuation are ±0.02 dB and ±0.137 kHz, respectively. Thanks to the two asymmetric ring lengths, the sidemode suppression ratio (SMSR) is optimized by 54 dB compared to that with the only long ring structure, 26 dB when using only the Vernier effect or 12 dB for existing PT symmetry BFL. This BFL design with single longitudinal mode and high SMSR output can be applied to high coherent communication and Brillouin-based microwave photonics systems with low phase noise.

5.
Opt Express ; 31(7): 11547-11556, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155787

ABSTRACT

Sandwich-type structure based on Salisbury screen effect is a simple and effective strategy to acquire high-performance terahertz (THz) absorption. The number of sandwich layer is the key factor that affects the absorption bandwidth and intensity of THz wave. Traditional metal/insulant/metal (M/I/M) absorber is difficult to construct multilayer structure because of low light transmittance of the surface metal film. Graphene exhibits huge advantages including broadband light absorption, low sheet resistance and high optical transparency, which are useful for high-quality THz absorber. In this work, we proposed a series of multilayer metal/PI/graphene (M/PI/G) absorber based on graphene Salisbury shielding. Numerical simulation and experimental demonstration were provided to explain the mechanism of graphene as resistive film for strong electric field. And it is important to improve the overall absorption performance of the absorber. In addition, the number of resonance peaks is found to increase by increasing the thickness of the dielectric layer in this experiment. The absorption broadband of our device is around 160%, greater than those previously reported THz absorber. Finally, this experiment successfully prepared the absorber on a polyethylene terephthalate (PET) substrate. The absorber has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

6.
Opt Express ; 30(25): 44545-44555, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522877

ABSTRACT

A narrow linewidth parity-time (PT) symmetric Brillouin fiber laser (BFL) based on dual-polarization cavity (DPC) with single micro-ring resonator (MRR) is proposed and experimentally investigated. A 10 km single-mode fiber provides SBS gain, while a DPC consisting of optical coupler, polarization beam combiner and a MRR, is used to achieve PT symmetry. Due to the reciprocity of light propagation in the MRR, the PT symmetry BFL based on DPC implements two identical feedback loops that are connected to one another, one with a Brillouin gain coefficient and the other with a loss coefficient of the same magnitude, to break a PT symmetric. Compared with existing BFL studies, this design does not call for frequency matching of compound cavities structures or without ultra-narrow bandwidth bandpass filters. In the experiment, the 3-dB linewidth of PT symmetry BFL based on DPC with single MRR is 11.95 Hz with the threshold input power of 2.5 mW, according to the measured linewidth of 239 Hz at the -20 dB power point. And a 40 dB maximum mode suppression ratio are measured. Furthermore, the PT symmetry BFL's wavelength is tuned between 1549.60 and 1550.73 nm. This design with single longitudinal mode output can be applied to high coherent communication systems.

7.
Opt Express ; 30(22): 40482-40490, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298980

ABSTRACT

Graphene is an attractive material for terahertz (THz) absorbers because of its tunable Fermi-Level (EF). It has become a research hotspot to modulate the EF of graphene and THz absorption of graphene. Here, a sandwich-structured single layer graphene (SLG)/ Polyimide (PI)/Au THz absorber was proposed, and top-layer graphene was doped by HAuCl4 solutions. The EF of graphene was shifted by HAuCl4 doping, which was characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Raman tests. The results showed that the EF is shifted about 0.42 eV under 100 mM HAuCl4 doping, the sheet resistance is reduced from 1065 Ω/sq (undoped) to 375 Ω/sq (100 mM). The corresponding absorbance was increased from 40% to 80% at 0.65 THz and increased from 50% to 90% at 2.0 THz under 100 mM HAuCl4 doping. Detailed studies showed that the absorption came from a sandwich structure that meets the impedance matching requirements and provided a thin resonant cavity to capture the incident THz waves. In addition, not only the absorber can be prepared simply, but its results in experiments and simulations agree as well. The proposed device can be applied to electromagnetic shielding and imaging, and the proposed method can be applied to prepare other graphene-based devices.

8.
Nanotechnology ; 32(14): 145713, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33113513

ABSTRACT

Domain engineering plays a pivotal role in the development of ferroelectric non-volatile memory devices. In this work, we mainly focus on the domain kinetic in ion-sliced single crystal LiNbO3 thin films under tip-induced electric fields using piezoresponse force microscope (PFM). Polarization reversal takes place when the electric fields are above threshold value (coercive voltage V c) of films. Besides, the dependence of domain dynamic on pulse duration and amplitude were investigated in detail, and specific local domain reversal (5 µm) was completed by the optimized poling condition. All the results reveal that tip-induced polarization reversal could be an effective way to domain engineering, which gives much more promising prospects regarding to the high density non-volatile ferroelectric memory devices.

9.
Nanotechnology ; 31(15): 155503, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31891922

ABSTRACT

Flexible tactile sensor array has drawn great attention due to its ability to mimic human skin for sensing weak pressure and distinguishing pressure distribution, but the deficiency of sensitivity, the low resolution, and the complex and costly fabrication process seriously limit its development. Hence, it is urgent to explore a fully flexible sensor array with high sensitivity and high resolution as an electronic-skin. Here, the flexible piezoelectric tactile sensor array based on the composite film of PZT nanowires and polydimethylsiloxane (PDMS) was fabricated by the simple fabrication process (electrospinning process and mixture process). The electrospun PZT nanofibers have high aspect ratio and could enhance the generation and accumulation of the piezoelectric charges in the two electrodes of the composite film. By virtue of the inherently high piezoelectric coefficient of PZT material and high aspect ratio of PZT nanofibers, the composite film (75 wt% PZT nanofibers) presents high force-electric conversion capability and high sensitivity. Owing to the bottom electrode sheet shared by all sensor units and the supporting layer with relatively high elastic modulus, the sensor array shows high resolution to qualitatively sense the distribution and size of the impact in real time. Moreover, the sensor array also shows great durability, repeatability, and large working range. Based on these excellent characteristics, the sensor array has wide potential applications in the field of bionics science, robotics science and human-machine interaction.

10.
Sensors (Basel) ; 19(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547156

ABSTRACT

As a promising functional material, ferroelectric Pb(ZrxTi1-x)O3 (PZT) are widely used in many optical and electronic devices. Remarkably, as the film thickness decreases, the materials' properties deviate gradually from those of solid materials. In this work, multilayered PZT thin films with different thicknesses are fabricated by Sol-Gel technique. The thickness effect on its microstructure, ferroelectric, and optical properties has been studied. It is found that the surface quality and the crystalline structure vary with the film thickness. Moreover, the increasing film thickness results in a significant increase in remnant polarization, due to the interfacial layer effect. Meanwhile, the dielectric loss and tunability are strongly dependent on thickness. In terms of optical properties, the refractive index of PZT films increase with the increasing thickness, and the photorefractive effect are also influenced by the thickness, which could all be related to the film density and photovoltaic effect. Besides, the band gap decreases as the film thickness increases. This work is significant for the application of PZT thin film in optical and optoelectronic devices.

11.
ACS Omega ; 9(5): 5780-5787, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343983

ABSTRACT

Antiferroelectric (AFE) films have received a lot of attention for their high energy storage density and temperature stability, giving them potential in electrostatic energy storage devices. In this work, La-doped PZT AFE films were prepared through a sol-gel procedure, and energy storage properties within a wide temperature range (73-533 K) were explored. Typical dipoles rotate in one direction along electric fields, combined with phase transition behavior. The polarization behavior is modulated by both electric field and temperature. With increasing temperature, the saturation polarization strength decreases due to the phase transition from the AFE state to the ferroelectric state. Besides, the temperature dependence of electrical properties was investigated, and the energy storage density of Pb0.97La0.02(Zr0.95Ti0.05)O3 films was about 5.84 J/cm3 in the low temperature range (<273.15 K). All results indicate the great potential of AFE films in pulse power device applications, especially in low-temperature ranges.

12.
Micromachines (Basel) ; 15(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39203652

ABSTRACT

Ultrasound is widely applied in diverse domains, such as medical imaging, non-destructive evaluation, and acoustic communication. Piezoelectric micromachined ultrasonic transducers (PMUTs) capable of generating and receiving ultrasonic signals at the micrometer level have become a prominent technology in the field of ultrasound. It is important to enrich the models of the PMUTs to meet the varied applications. In this study, a series of PMUT devices featured with various top electrode configurations, square, circular, and doughnut, were designed to assess the influence of shape on the emission efficacy. It was demonstrated that the PMUTs with a circular top electrode were outperformed, which was calculated from the external acoustic pressure produced by the PMUTs operating in the fundamental resonant mode at a specified distance. Furthermore, the superior performance of PMUT arrays were exhibited through computational simulations for the circular top electrode geometries. Conventional microelectromechanical systems (MEMS) techniques were used to fabricate an array of PMUTs based on aluminum nitride (AlN) films. These findings make great contributions for enhancing the signal transmission sensitivity and bandwidth of PMUTs, which have significant potential in non-destructive testing and medical imaging applications.

13.
RSC Adv ; 14(12): 8313-8321, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38469185

ABSTRACT

Lithium niobate (LiNbO3) single crystals are a kind of ferroelectric material with a high piezoelectric coefficient and Curie temperature, which is suitable for the preparation of piezoelectric pressure sensors. However, there is little research reporting on the use of LiNbO3 single crystals to prepare piezoelectric pressure sensors. Therefore, in this paper, LiNbO3 was used to prepare piezoelectric pressure sensors to study the feasibility of using LiNbO3 single crystals as a sensitive material for piezoelectric pressure sensors. In addition, chemical mechanical polishing (CMP) technology was used to prepare LiNbO3 crystals with different thicknesses to study the influence of these LiNbO3 crystals on the electric charge output of the sensors. The results showed that the sensitivity of a 300 µm sample (0.218 mV kPa-1) was about 1.23 times that of a 500 µm sample (0.160 mV kPa-1). Low-temperature polymer heterogeneous integration and oxygen plasma activation technologies were used to realize the heterogeneous integration of LiNbO3 and silicon to prepare piezoelectric pressure sensors, which could significantly improve the sensitivity of the sensor by approximately 16.06 times (2.569 mV kPa-1) that of the original sample (0.160 mV kPa-1) due to an appropriate residual stress that did not shatter LiNbO3 or silicon, thus providing a possible method for integrating piezoelectric pressure sensors and integrated circuits.

14.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38793158

ABSTRACT

As a cutting-edge technology, animal robots based on living organisms are being extensively studied, with potential for diverse applications in the fields of neuroscience, national security, and civil rescue. However, it remains a significant challenge to reliably control the animal robots with the objective of protecting their long-term survival, and this has seriously hindered their practical implementation. To address this issue, this work explored the use of a bio-friendly neurostimulation system that includes integrated stimulation electrodes together with a remote wireless stimulation circuit to control the moving behavior of rat robots. The integrated electrodes were implanted simultaneously in four stimulation sites, including the medial forebrain bundle (MFB) and primary somatosensory cortex, barrel field (S1BF). The control system was able to provide flexibility in adjusting the following four stimulation parameters: waveform, amplitude, frequency, and duration time. The optimized parameters facilitated the successful control of the rat's locomotion, including forward movement and left and right turns. After training for a few cycles, the rat robots could be guided along a designated route to complete the given mission in a maze. Moreover, it was found that the rat robots could survive for more than 20 days with the control system implanted. These findings will ensure the sustained and reliable operation of the rat robots, laying a robust foundation for advances in animal robot regulation technology.

15.
Brain Res ; 1841: 149085, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38876320

ABSTRACT

As a cutting-edge technology of connecting biological brain and external devices, brain-computer interface (BCI) exhibits promising applications on extensive fields such as medical and military. As for the disable individuals with four limbs losing the motor functions, it is a potential treatment way to drive mechanical equipments by the means of non-invasive BCI, which is badly depended on the accuracy of the decoded electroencephalogram (EEG) singles. In this study, an explanatory convolutional neural network namely EEGNet based on SimAM attention module was proposed to enhance the accuracy of decoding the EEG singles of index and thumb fingers for both left and right hand using sensory motor rhythm (SMR). An average classification accuracy of 72.91% the data of eight healthy subjects was obtained, which were captured from the one second before finger movement to two seconds after action. Furthermore, the character of event-related desynchronization (ERD) and event related synchronization (ERS) of index and thumb fingers was also studied in this study. These findings have significant importance for controlling external devices or other rehabilitation equipment using BCI in a fine way.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Fingers , Neural Networks, Computer , Humans , Fingers/physiology , Electroencephalography/methods , Adult , Male , Female , Young Adult , Movement/physiology , Brain/physiology
16.
Microsyst Nanoeng ; 10: 64, 2024.
Article in English | MEDLINE | ID: mdl-38784374

ABSTRACT

Flexible sensors have been widely studied for use in motion monitoring, human‒machine interactions (HMIs), personalized medicine, and soft intelligent robots. However, their practical application is limited by their low output performance, narrow measuring range, and unidirectional force detection. Here, to achieve flexibility and high performance simultaneously, we developed a flexible wide-range multidimensional force sensor (FWMFS) similar to bones embedded in muscle structures. The adjustable magnetic field endows the FWMFS with multidimensional perception for detecting forces in different directions. The multilayer stacked coils significantly improved the output from the µV to the mV level while ensuring FWMFS miniaturization. The optimized FWMFS exhibited a high voltage sensitivity of 0.227 mV/N (0.5-8.4 N) and 0.047 mV/N (8.4-60 N) in response to normal forces ranging from 0.5 N to 60 N and could detect lateral forces ranging from 0.2-1.1 N and voltage sensitivities of 1.039 mV/N (0.2-0.5 N) and 0.194 mV/N (0.5-1.1 N). In terms of normal force measurements, the FWMFS can monitor finger pressure and sliding trajectories in response to finger taps, as well as measure plantar pressure for assessing human movement. The plantar pressure signals of five human movements collected by the FWMFS were analyzed using the k-nearest neighbors classification algorithm, which achieved a recognition accuracy of 92%. Additionally, an artificial intelligence biometric authentication system is being developed that classifies and recognizes user passwords. Based on the lateral force measurement ability of the FWMFS, the direction of ball movement can be distinguished, and communication systems such as Morse Code can be expanded. This research has significant potential in intelligent sensing and personalized spatial recognition.

17.
Micromachines (Basel) ; 14(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677270

ABSTRACT

Due to their excellent capabilities to generate and sense ultrasound signals in an efficient and well-controlled way at the microscale, piezoelectric micromechanical ultrasonic transducers (PMUTs) are being widely used in specific systems, such as medical imaging, biometric identification, and acoustic wireless communication systems. The ongoing demand for high-performance and adjustable PMUTs has inspired the idea of manipulating PMUTs by voltage. Here, PMUTs based on AlN thin films protected by a SiO2 layer of 200 nm were fabricated using a standard MEMS process with a resonant frequency of 505.94 kHz, a -6 dB bandwidth (BW) of 6.59 kHz, and an electromechanical coupling coefficient of 0.97%. A modification of 4.08 kHz for the resonant frequency and a bandwidth enlargement of 60.2% could be obtained when a DC bias voltage of -30 to 30 V was applied, corresponding to a maximum resonant frequency sensitivity of 83 Hz/V, which was attributed to the stress on the surface of the piezoelectric film induced by the external DC bias. These findings provide the possibility of receiving ultrasonic signals within a wider frequency range, which will play an important role in underwater three-dimensional imaging and nondestructive testing.

18.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38004845

ABSTRACT

In micron or nano smart sensing systems, piezoelectric cantilever beams are distributed as major components in microsensors, actuators, and energy harvesters. This paper investigates the performance of four cantilever beam devices with "electric-force" conversion based on the inverse piezoelectric effect of lithium niobate (LiNbO3, LN) single-crystal materials. A new compact piezoelectric smart device model is proposed, designed as a single mass block connected by four beams, where devices exhibit smaller lateral errors (0.39-0.41%). The relationship between the displacement characteristics of cantilever beams and driving voltage was researched by applying excitation signals. The results show that the device has the maximum displacement at a first-order intrinsic frequency (fosc = 11.338 kHz), while the displacement shows a good linear relationship (R2 = 0.998) with driving voltage. The square wave signals of the same amplitude have greater "electrical-force" conversion efficiency. The output displacement can reach 12 nm, which is much higher than the output displacement with sinusoidal excitation. In addition, the relative displacement deviation of devices can be maintained within ±1% under multiple cycles of electrical signal loading. The small size, high reliability, and ultra-stability of Si-LN ferroelectric single-crystal cantilever beam devices with lower vibration amplitudes are promising for nanopositioning techniques in microscopy, diagnostics, and high-precision manufacturing applications.

19.
Nanomaterials (Basel) ; 13(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836333

ABSTRACT

With the existing pressure sensors, it is difficult to achieve the unification of wide pressure response range and high sensitivity. Furthermore, the preparation of pressure sensors with excellent performance for sleep health monitoring has become a research difficulty. In this paper, based on material and microstructure synergistic enhancement mechanism, a hybrid pressure sensor (HPS) integrating triboelectric pressure sensor (TPS) and piezoelectric pressure sensor (PPS) is proposed. For the TPS, a simple, low-cost, and structurally controllable microstructure preparation method is proposed in order to investigate the effect of carbon nano-onions (CNOs) and hierarchical composite microstructures on the electrical properties of CNOs@Ecoflex. The PPS is used to broaden the pressure response range and reduce the pressure detection limit of HPS. It has been experimentally demonstrated that the HPS has a high sensitivity of 2.46 V/104 Pa (50-600 kPa) and a wide response range of up to 1200 kPa. Moreover, the HPS has a low detection limit (10 kPa), a high stability (over 100,000 cycles), and a fast response time. The sleep monitoring system constructed based on HPS shows remarkable performance in breathing state recognition and sleeping posture supervisory control, which will exhibit enormous potential in areas such as sleep health monitoring and potential disease prediction.

20.
Nanomaterials (Basel) ; 13(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985997

ABSTRACT

The substrate impurities scattering will lead to unstable temperature-sensitive behavior and poor linearity in graphene temperature sensors. And this can be weakened by suspending the graphene structure. Herein, we report a graphene temperature sensing structure, with suspended graphene membranes fabricated on the cavity and non-cavity SiO2/Si substrate, using monolayer, few-layer, and multilayer graphene. The results show that the sensor provides direct electrical readout from temperature to resistance transduction by the nano piezoresistive effect in graphene. And the cavity structure can weaken the substrate impurity scattering and thermal resistance effect, which results in better sensitivity and wide-range temperature sensing. In addition, monolayer graphene is almost no temperature sensitivity. And the few-layer graphene temperature sensitivity, lower than that of the multilayer graphene cavity structure (3.50%/°C), is 1.07%/°C. This work demonstrates that piezoresistive in suspended graphene membranes can effectively enhance the sensitivity and widen the temperature sensor range in NEMS temperature sensors.

SELECTION OF CITATIONS
SEARCH DETAIL