Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Am Chem Soc ; 146(4): 2411-2418, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38234111

ABSTRACT

Nanographene C222, which consists of a planar graphenic plane containing 222 carbon atoms, holds the record as the largest planar nanographene synthesized to date. However, its complete insolubility makes the processing of C222 difficult. Here we addressed this issue by introducing peripheral substituents perpendicular to the graphene plane, effectively disrupting the interlayer stacking and endowing C222 with good solubility. We also found that the electron-withdrawing substituents played a crucial role in the cyclodehydrogenation process, converting the dendritic polyphenylene precursor to C222. After disrupting the interlayer stacking, the introduction of only a few peripheral carboxylic groups allowed C222 to dissolve in phosphate buffer saline, reaching a concentration of up to 0.5 mg/mL. Taking advantage of the good photosensitizing and photothermal properties of the inner C222 core, the resulting water-soluble C222 emerged as a single-component agent for both photothermal and photodynamic tumor therapy, exhibiting an impressive tumor inhibition rate of 96%.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photothermal Therapy , Photochemotherapy/methods , Neoplasms/drug therapy
2.
J Nanobiotechnology ; 22(1): 290, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802884

ABSTRACT

Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.


Subject(s)
Cornea , Corneal Neovascularization , Nanoparticles , Ophthalmic Solutions , Corneal Neovascularization/drug therapy , Animals , Nanoparticles/chemistry , Ophthalmic Solutions/chemistry , Cornea/metabolism , Cornea/drug effects , Mice , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Particle Size , Humans , Male , Mice, Inbred C57BL , Rabbits
3.
J Nanobiotechnology ; 21(1): 378, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848956

ABSTRACT

BACKGROUND: The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS: In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION: This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Doxorubicin , Lung Neoplasms , Nanoparticles , Photothermal Therapy , Humans , B7 Antigens , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Gold , Hydrogen-Ion Concentration , Hyperthermia, Induced , Lung Neoplasms/drug therapy , Phototherapy , Photothermal Therapy/methods , Tumor Microenvironment , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Mice , Xenograft Model Antitumor Assays
4.
Luminescence ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151242

ABSTRACT

The eye is a very important organ, and keratitis, corneal neovascularization, floaters, age-related macular degeneration, and other vision problems have seriously affected people's quality of life. Among the ophthalmic treatments, laser photocoagulations have been proposed and have shown therapeutic effects in clinical settings. However, corneal thinning and bleeding lesions induced by laser damage have led to limit its applications. To treat the issues of traditional hyperthermia treatments, photosensitizers [e.g., indocyanine green (ICG)] have been investigated to increase the therapeutic effects of corneal neovascularization and choroidal neovascularization. In the recent study, with the help of ICG, laser-induced nanobubble was proposed to treat vitreous opacities. The developed strategies could enlarge the effect of laser irradiation and reduce the side effects, so as to expand the scope of laser treatments in clinical ophthalmic diseases.

5.
Eur J Nucl Med Mol Imaging ; 49(8): 2605-2617, 2022 07.
Article in English | MEDLINE | ID: mdl-34939176

ABSTRACT

PURPOSE: To surmount the critical issues of indocyanine green (ICG), and thus achieving a precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. METHODS: In this study, a facile and green pure-nanomedicine formulation technology is developed to construct carrier-free indocyanine green nanoparticles (nanoICG), and which subsequently dispersed into lipiodol via a super-stable homogeneous lipiodol formulation technology (SHIFT nanoICG) for transcatheter arterial embolization combined near-infrared fluorescence-guided precise hepatectomy. RESULTS: SHIFT nanoICG integrates excellent anti-photobleaching capacity, great optical imaging property, and specific tumoral deposition to recognize tumor regions, featuring entire-process enduring fluorescent-guided precise hepatectomy, especially in resection of the indiscoverable satellite lesions (0.6 mm × 0.4 mm) in rabbit bearing VX2 orthotopic hepatocellular carcinoma models. CONCLUSION: Such a simple and effective strategy provides a promising avenue to address the clinical issue of clinical hepatectomy and has excellent potential for a translational pipeline.


Subject(s)
Carcinoma, Hepatocellular , Embolization, Therapeutic , Liver Neoplasms , Nanoparticles , Surgery, Computer-Assisted , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Ethiodized Oil , Humans , Indocyanine Green , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Optical Imaging/methods , Rabbits , Surgery, Computer-Assisted/methods
6.
J Nanobiotechnology ; 20(1): 250, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35658966

ABSTRACT

BACKGROUND: Applying traditional fluorescence navigation technologies in hepatocellular carcinoma is severely restricted by high false-positive rates, variable tumor differentiation, and unstable fluorescence performance. RESULTS: In this study, a green, economical and safe nanomedicine formulation technology was developed to construct carrier-free indocyanine green nanoparticles (nanoICG) with a small uniform size and better fluorescent properties without any molecular structure changes compared to the ICG molecule. Subsequently, nanoICG dispersed into lipiodol via a super-stable homogeneous intermixed formulation technology (SHIFT&nanoICG) for transhepatic arterial embolization combined with fluorescent laparoscopic hepatectomy to eliminate the existing shortcomings. A 52-year-old liver cancer patient was recruited for the clinical trial of SHIFT&nanoICG. We demonstrate that SHIFT&nanoICG could accurately identify and mark the lesion with excellent stability, embolism, optical imaging performance, and higher tumor-to-normal tissue ratio, especially in the detection of the microsatellite lesions (0.4 × 0.3 cm), which could not be detected by preoperative imaging, to realize a complete resection of hepatocellular carcinoma under fluorescence laparoscopy in a shorter period (within 2 h) and with less intraoperative blood loss (50 mL). CONCLUSIONS: This simple and effective strategy integrates the diagnosis and treatment of hepatocellular carcinoma, and thus, it has great potential in various clinical applications.


Subject(s)
Carcinoma, Hepatocellular , Laparoscopy , Liver Neoplasms , Nanoparticles , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Coloring Agents , Ethiodized Oil , Humans , Indocyanine Green , Laparoscopy/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Middle Aged , Optical Imaging/methods
7.
Angew Chem Int Ed Engl ; 61(50): e202211674, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36184566

ABSTRACT

A lack of targeting accuracy and radiosensitivity severely limits clinical radiotherapy. In this study, we developed a radiosensitizer comprised of Ru-based metal-organic nanostructures (ZrRuMn-MONs@mem) to optimize irradiation by maximizing reactive oxygen species (ROS) generation and CO release in X-ray-induced dynamic therapy (XDT). The well-designed nanostructures increase the direct absorption of radiation doses (primary radiation) and promote the deposition of photons and electrons (secondary radiation). The secondary electrons were trapped and transferred in the constrained MONs where they induce a cascade of reactions to increase the therapeutic efficiency. Meanwhile, the full-length antiglypican 3 (GPC3) antibody (hGC33) expressed a cell membrane coating enabling active targeting of tumor sites with optimized biocompatibility. The ZrRuMn-MONs@mem represents a starting point for advancing an all-around radiosensitizer that operates efficiently in clinical XDT.


Subject(s)
Nanostructures , Radiation-Sensitizing Agents , Ruthenium , Reactive Oxygen Species/metabolism , Radiation-Sensitizing Agents/pharmacology , Nanostructures/chemistry , Electrons , Cell Line, Tumor
8.
Small ; 17(42): e2101976, 2021 10.
Article in English | MEDLINE | ID: mdl-34350690

ABSTRACT

Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.


Subject(s)
Nanoparticles , Neoplasms , Ultrasonic Therapy , Combined Modality Therapy , Humans , Neoplasms/therapy
9.
J Nanobiotechnology ; 19(1): 454, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963479

ABSTRACT

Gold nanorods (GNRs) have a broad application prospect in biomedical fields because of their unique properties and controllable surface modification. The element aurum (Au) with high atomic number (high-Z) render GNRs ideal radiosensitive materials for radiation therapy and computed tomography (CT) imaging. Besides, GNRs have the capability of efficiently converting light energy to heat in the near-infrared (NIR) region for photothermal therapy. Although there are more and more researches on GNRs for radiation therapy, how to improve their biocompatibility and how to efficiently utilize them for radiation therapy should be further studied. This review will focuse on the research progress regarding the preparation and toxicity reduction of GNRs, as well as GNRs-mediated radiation therapy.


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Radiotherapy , Animals , Gold/therapeutic use , Gold/toxicity , Humans , Hyperthermia, Induced , Nanotubes/toxicity , Photosensitizing Agents/toxicity , Photothermal Therapy
10.
Bioconjug Chem ; 31(2): 276-292, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31935072

ABSTRACT

The greatest advantage of activatable fluorescence probes (AFPs) is the inherent responsiveness to manipulate spectroscopic properties by chemical/physical interactions with the biological analytes/microenvironmental factors. As alternatives to "always-on" fluorescence probes, AFPs in the first near-infrared (NIR-I) window expanded dramatically over the past decade and served as powerful tools in fluorescence biosensing and bioimaging. Benefiting from the deep tissue penetration, minimal tissue damage, and negligible background signal within longer wavelength, recent progress of fluorescent materials in the second near-infrared (NIR-II) window has been creating vast new opportunities in developing AFPs. Here, we review the current role of AFPs in biosensing and bioimaging, with emphasis on NIR-II AFPs developed for biomedical applications. The challenges and prospects of AFPs are also discussed by considering the clinical translation from bench to bedside.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes/analysis , Optical Imaging/methods , Animals , Biosensing Techniques/instrumentation , Fluorescence , Humans , Neoplasms/diagnostic imaging , Optical Imaging/instrumentation
11.
Nano Lett ; 19(5): 2993-3001, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30964695

ABSTRACT

Currently, various oncolytic adenoviruses (OA) are being explored in both preclinical and clinical virotherapy. However, the pre-existing neutralizing antibodies (nAbs) and poor targeting delivery are major obstacles for systemically administered OA. Therefore, we designed bioengineered cell membrane nanovesicles (BCMNs) that harbor targeting ligands to achieve robust antiviral immune shielding and targeting capabilities for oncolytic virotherapy. We employed two distinct biomimetic synthetic approaches: the first is based on in vitro genetic membrane engineering to embed targeting ligands on the cell membrane, and the second is based on in vivo expression of CRISPR-engineered targeting ligands on red-blood-cell membranes. The results indicate that both bioengineering approaches preserve the infectivity and replication capacity of OA in the presence of nAbs, in vitro and in vivo. Notably, OA@BCMNs demonstrated a significant suppression of the induced innate and adaptive immune responses against OA. Enhanced targeting delivery, viral oncolysis, and survival benefits in multiple xenograft models were observed without overt toxicity. These findings reveal that OA@BCMNs may provide a clinical basis for improving oncolytic virotherapy by overcoming undesired antiviral immunity and enhancing cancer cell selectivity via biomimetic synthesis approaches.


Subject(s)
Antibodies, Neutralizing/pharmacology , Drug Delivery Systems , Oncolytic Virotherapy , Adenoviridae/chemistry , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/chemistry , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/genetics , Genetic Engineering , Humans , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Xenograft Model Antitumor Assays
12.
Angew Chem Int Ed Engl ; 58(1): 269-272, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30421488

ABSTRACT

We report the rational design of coordination-driven self-assembly metal-organic nanostructures for multifunctional nanotheranostics. Zinc(II) coordination-based nano-formulations capable of loading indocyanine green (ICG) and therapeutic genes were prepared to achieve a fluorescence/photoacoustic imaging-guided combination photo/gene therapy strategy. We showed the enhanced theranostic capability of zinc(II)-dipicolylamine-assisted assembly of ICG, as well as simultaneous targeted gene delivery in an experimental mouse model of cancer. Such a co-assembly strategy provides a facile way to achieve combined therapeutic functions for personalized nanomedicine.


Subject(s)
Genetic Therapy/methods , Nanomedicine/methods , Phototherapy/methods , Zinc/chemistry , Humans
13.
J Am Chem Soc ; 140(44): 14980-14989, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30359020

ABSTRACT

Tumor microenvironment-induced ultrasmall nanodrug generation (TMIUSNG) is an unprecedented approach to overcome the drug penetration barriers across complex biological systems, poor circulation stability and limited drug loading efficiency (DLE). Herein, a novel strategy was designed to synthesize metal-organic nanodrug complexes (MONCs) through supramolecular coassembly of photosensitizer sinoporphyrin sodium, chemotherapeutic drug doxorubicin and ferric ions. Compared with the free photosensitizer, MONCs produced 3-fold more reactive oxygen species (ROS) through the energy transfer-mediated fluorescence quenching. Remarkably, the self-delivering supramolecular MONCs with high DLE acted as a potent ultrasmall-nanodrug generator in response to the mild acidic tumor microenvironment to release ultrasmall nanodrugs (5-10 nm in diameter) from larger parental nanoparticles (140 nm in diameter), which in turn enhanced the intratumor permeability and therapeutic efficacy. The key mechanism of MONC synthesis was proposed, and we, for the first time, validated the generation of supramolecular scaffold intermediates between MONCs' assembly/disassembly states, as well as their involvement in multidrug ligands interactions. This proof-of-concept TMIUSNG strategy provides a foundation for the rational design of analogous carrier-free nanotheranostics through the combination of multiple therapeutic agents and metal ions with imaging functions.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Delivery Systems , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/chemistry , Mice , Optical Imaging , Particle Size , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Reactive Oxygen Species/metabolism , Surface Properties , Tumor Cells, Cultured , Tumor Microenvironment/drug effects
14.
Proc Natl Acad Sci U S A ; 112(45): E6129-38, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26504197

ABSTRACT

It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses.


Subject(s)
Antigens/metabolism , Drug Delivery Systems/methods , Nanostructures/chemistry , Transport Vesicles/chemistry , Viral Vaccines/metabolism , Nanotechnology/methods , Nanotechnology/trends , Phospholipids/analysis , Recombinant Proteins/metabolism , Surface-Active Agents/analysis
16.
Small ; 11(37): 4806-22, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26193176

ABSTRACT

Metal-organic frameworks (MOFs), which are a unique class of hybrid porous materials built from metal ions and organic linkers, have attracted significant research interest in recent years. Compared with conventional porous materials, MOFs exhibit a variety of advantages, including a large surface area, a tunable pore size and shape, an adjustable composition and structure, biodegradability, and versatile functionalities, which enable MOFs to perform as promising platforms for drug delivery, molecular imaging, and theranostic applications. In this article, the recent research progress related to nanoscale metal-organic frameworks (NMOFs) is summarized with a focus on synthesis strategies and drug delivery, molecular imaging, and theranostic applications. The future challenges and opportunities of NMOFs are also discussed in the context of translational medical research. More effort is warranted to develop clinically translatable NMOFs for various applications in nanomedicine.


Subject(s)
Drug Delivery Systems , Metals/chemistry , Molecular Imaging , Nanomedicine , Animals , Drug Carriers/chemistry , Humans , Translational Research, Biomedical
17.
J Control Release ; 374: 50-60, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39111599

ABSTRACT

Corneal neovascularization (CNV) is a major cause of blindness worldwide. However, the recent drug treatment is limited by repeated administration and low drug bioavailability. In this work, SU6668 (an inhibitor of receptor tyrosine kinases) and indocyanine green (ICG) are loaded onto poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and then coated with anti-VEGFR2 single chain antibody (AbVr2 scFv) genetically engineered cell membrane vesicles. The nanomedicine is delivered via eye drops, and the hyperthermia induced by laser irradiation could block the blood vessels. Meanwhile, the photothermal effect can also cause the degradation of nanomaterials and release chemotherapeutic drugs in the blocked area, thereby continuously inhibit the neovascularization. Furthermore, SU6668 could inhibit the expression of heat shock protein 70 (HSP70), promoting the cell death induced by photothermal effect. In conclusion, the combination of photothermal and chemotherapy drugs provides a novel, effective and safe approach for the treatment of CNV.

18.
Nanoscale ; 16(15): 7307-7322, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38533621

ABSTRACT

Since the theory of free radical-induced aging was proposed in 1956, it has been constantly proven that reactive oxygen species (ROS) produced by oxidative stress play a vital role in the occurrence and progression of eye diseases. However, the inherent limitations of traditional drug therapy hindered the development of ophthalmic disease treatment. In recent years, great achievements have been made in the research of nanomedicine, which promotes the rapid development of safe theranostics in ophthalmology. In this review, we focus on the applications of antioxidant nanomedicine in the treatment of ophthalmology. The eye diseases were mainly classified into two categories: ocular surface diseases and posterior eye diseases. In each part, we first introduced the pathology of specific diseases about oxidative stress, and then presented the representative application examples of nano-antioxidants in eye disease therapy. Meanwhile, the nanocarriers that were used, the mechanism of function, and the therapeutic effect were also presented. Finally, we summarized the latest research progress and limitations of antioxidant nanomedicine for eye disease treatment and put forward the prospects of future development.


Subject(s)
Eye Diseases , Ophthalmology , Humans , Antioxidants/pharmacology , Oxidative Stress , Eye Diseases/drug therapy , Reactive Oxygen Species/pharmacology
19.
Adv Healthc Mater ; 13(5): e2302192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38018632

ABSTRACT

Corneal neovascularization (CNV) is one of the leading causes of blindness in the world. In clinical practice; however, it remains a challenge to achieve a noninvasive and safe treatment. Herein, a biocompatible shell with excellent antioxidant and antivascularity is prepared by co-assembly of epigallocatechin gallate/gallic acid and Cu (II). After loading glucose oxidase (GOx) inside, the shell is modified with dimeric DPA-Zn for codelivering vascular endothelial growth factor (VEGF) small interfering RNA (VEGF-siRNA). Meanwhile, the Arg-Gly-Asp peptide (RGD) peptide-engineered cell membranes coating improves angiogenesis-targeting and is biocompatible for the multifunctional nanomedicine (CEGs/RGD). After eye drops administration, CEGs/RGD targets enrichment in neovascularization and CEGs NPs enter cells. Then, the inner GOx consumes glucose with a decrease in local pH, which in turn leads to the release of EGCE and VEGF-siRNA. As a result, the nanomedicines significantly reduce angiogenesis and inhibit CNV formation through synergistic effect of antioxidant and antivascular via down-regulation of cluster of differentiation 31 and VEGF. The nanomedicine represents a safe and efficient CNV treatment through the combined effect of antioxidant/gene, which provides important theoretical and clinical significance.


Subject(s)
Corneal Neovascularization , Humans , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , RNA, Small Interfering/pharmacology , Oligopeptides/pharmacology
20.
Anal Bioanal Chem ; 405(29): 9555-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121430

ABSTRACT

We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005­50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.


Subject(s)
Biosensing Techniques/methods , Carcinoembryonic Antigen/analysis , Immunoassay/methods , Magnetite Nanoparticles/chemistry , Biosensing Techniques/instrumentation , Flow Injection Analysis , Humans , Immunoassay/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL