Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126079

ABSTRACT

Individuals with type 2 diabetes mellitus (T2DM) are at an increased risk for heart failure, yet preventive cardiac care is suboptimal in this population. Pyridoxamine (PM), a vitamin B6 analog, has been shown to exert protective effects in metabolic and cardiovascular diseases. In this study, we aimed to investigate whether PM limits adverse cardiac remodeling and dysfunction in rats who develop T2DM. Male rats received a standard chow diet or Western diet (WD) for 18 weeks to induce prediabetes. One WD group received additional PM (1 g/L) via drinking water. Glucose tolerance was assessed with a 1 h oral glucose tolerance test. Cardiac function was evaluated using echocardiography and hemodynamic measurements. Histology on left ventricular (LV) tissue was performed. Treatment with PM prevented the increase in fasting plasma glucose levels compared to WD-fed rats (p < 0.05). LV cardiac dilation tended to be prevented using PM supplementation. In LV tissue, PM limited an increase in interstitial collagen deposition (p < 0.05) seen in WD-fed rats. PM tended to decrease 3-nitrotyrosine and significantly lowered 4-hydroxynonenal content compared to WD-fed rats. We conclude that PM alleviates interstitial fibrosis and oxidative stress in the hearts of WD-induced prediabetic rats.


Subject(s)
Diet, Western , Fibrosis , Oxidative Stress , Prediabetic State , Pyridoxamine , Animals , Oxidative Stress/drug effects , Male , Rats , Prediabetic State/drug therapy , Prediabetic State/metabolism , Prediabetic State/etiology , Pyridoxamine/pharmacology , Diet, Western/adverse effects , Myocardium/metabolism , Myocardium/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose/metabolism
2.
Nutrients ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337716

ABSTRACT

Endurance exercise training is a promising cardioprotective strategy in type 2 diabetes mellitus (T2DM), but the impact of its intensity is not clear. We aimed to investigate whether and how isocaloric moderate-intensity exercise training (MIT) and high-intensity interval exercise training (HIIT) could prevent the adverse cardiac remodeling and dysfunction that develop T2DM in rats. Male rats received a Western diet (WD) to induce T2DM and underwent a sedentary lifestyle (n = 7), MIT (n = 7) or HIIT (n = 8). Insulin resistance was defined as the HOMA-IR value. Cardiac function was assessed with left ventricular (LV) echocardiography and invasive hemodynamics. A qPCR and histology of LV tissue unraveled underlying mechanisms. We found that MIT and HIIT halted T2DM development compared to in sedentary WD rats (p < 0.05). Both interventions prevented increases in LV end-systolic pressure, wall thickness and interstitial collagen content (p < 0.05). In LV tissue, HIIT tended to upregulate the gene expression of an ROS-generating enzyme (NOX4), while both modalities increased proinflammatory macrophage markers and cytokines (CD86, TNF-α, IL-1ß; p < 0.05). HIIT promoted antioxidant and dicarbonyl defense systems (SOD2, glyoxalase 1; p < 0.05) whereas MIT elevated anti-inflammatory macrophage marker expression (CD206, CD163; p < 0.01). We conclude that both MIT and HIIT limit WD-induced T2DM with diastolic dysfunction and pathological LV hypertrophy, possibly using different adaptive mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , High-Intensity Interval Training , Male , Rats , Animals , Diabetes Mellitus, Type 2/prevention & control , Heart , Heart Ventricles , Echocardiography , Hemodynamics
SELECTION OF CITATIONS
SEARCH DETAIL