Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Psychiatry ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030263

ABSTRACT

The subgenual anterior cingulate cortex (sgACC) has been identified as a key brain area involved in various cognitive and emotional processes. While the sgACC has been implicated in both emotional valuation and emotional conflict monitoring, it is still unclear how this area integrates multiple functions. We characterized both single neuron and local field oscillatory activity in 14 patients undergoing sgACC deep brain stimulation for treatment-resistant depression. During recording, patients were presented with a modified Stroop task containing emotional face images that varied in valence and congruence. We further analyzed spike-field interactions to understand how network dynamics influence single neuron activity in this area. Most single neurons responded to both valence and congruence, revealing that sgACC neuronal activity can encode multiple processes within the same task, indicative of multifunctionality. During peak neuronal response, we observed increased spectral power in low frequency oscillations, including theta-band synchronization (4-8 Hz), as well as desynchronization in beta-band frequencies (13-30 Hz). Theta activity was modulated by current trial congruency with greater increases in spectral power following non-congruent stimuli, while beta desynchronizations occurred regardless of emotional valence. Spike-field interactions revealed that local sgACC spiking was phase-locked most prominently to the beta band, whereas phase-locking to the theta band occurred in fewer neurons overall but was modulated more strongly for neurons that were responsive to task. Our findings provide the first direct evidence of spike-field interactions relating to emotional cognitive processing in the human sgACC. Furthermore, we directly related theta oscillatory dynamics in human sgACC to current trial congruency, demonstrating it as an important regulator during conflict detection. Our data endorse the sgACC as an integrative hub for cognitive emotional processing through modulation of beta and theta network activity.

2.
Mol Psychiatry ; 28(9): 3888-3899, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37474591

ABSTRACT

Deep brain stimulation (DBS) has shown therapeutic benefits for treatment resistant depression (TRD). Stimulation of the subcallosal cingulate gyrus (SCG) aims to alter dysregulation between subcortical and cortex. However, the 50% response rates for SCG-DBS indicates that selection of appropriate patients is challenging. Since stimulation influences large-scale network function, we hypothesized that network features can be used as biomarkers to inform outcome. In this pilot project, we used resting-state EEG recorded longitudinally from 10 TRD patients with SCG-DBS (11 at baseline). EEGs were recorded before DBS-surgery, 1-3 months, and 6 months post surgery. We used graph theoretical analysis to calculate clustering coefficient, global efficiency, eigenvector centrality, energy, and entropy of source-localized EEG networks to determine their topological/dynamical features. Patients were classified as responders based on achieving a 50% or greater reduction in Hamilton Depression (HAM-D) scores from baseline to 12 months post surgery. In the delta band, false discovery rate analysis revealed that global brain network features (segregation, integration, synchronization, and complexity) were significantly lower and centrality of subgenual anterior cingulate cortex (ACC) was higher in responders than in non-responders. Accordingly, longitudinal analysis showed SCG-DBS increased global network features and decreased centrality of subgenual ACC. Similarly, a clustering method separated two groups by network features and significant correlations were identified longitudinally between network changes and depression symptoms. Despite recent speculation that certain subtypes of TRD are more likely to respond to DBS, in the SCG it seems that underlying brain network features are associated with ability to respond to DBS. SCG-DBS increased segregation, integration, and synchronizability of brain networks, suggesting that information processing became faster and more efficient, in those patients in whom it was lower at baseline. Centrality results suggest these changes may occur via altered connectivity in specific brain regions especially ACC. We highlight potential mechanisms of therapeutic effect for SCG-DBS.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Humans , Depressive Disorder, Treatment-Resistant/therapy , Pilot Projects , Deep Brain Stimulation/methods , Treatment Outcome , Gyrus Cinguli/physiology
3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34429359

ABSTRACT

Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.


Subject(s)
Coyotes/physiology , Food Chain , Lynx/physiology , Predatory Behavior , Puma/physiology , Reward , Ursidae/physiology , Animals , Carnivora/physiology , Ecosystem , Population Dynamics
4.
Ecol Appl ; 33(6): e2891, 2023 09.
Article in English | MEDLINE | ID: mdl-37232432

ABSTRACT

There is an increasing need to understand how animals respond to modifications of their habitat following landscape-scale disturbances such as wildfire or timber harvest. Such disturbances can promote increased use by herbivores due to changes in plant community structure that improve forage conditions, but can also cause avoidance if other habitat functions provided by cover are substantially reduced or eliminated. Quantifying the total effects of these disturbances, however, is challenging because they may not fully be apparent unless observed at successional timescales. Further, the effects of disturbances that improve habitat quality may be density dependent, such that the benefits are (1) less valuable to high-density populations because the per-capita benefits are reduced when shared among more users or, alternatively, (2) more valuable to animals living in high densities because resources may be more depleted from the greater intraspecific competition. We used 30 years of telemetry data on elk occurring at two distinct population densities to quantify changes in space use at diel, monthly, and successional timescales following timber harvest. Elk selected logged areas at night only, with selection strongest during midsummer, and peak selection occurring 14 years post harvest, but persisting for 26-33 years. This pattern of increased selection at night following a reduction in overhead canopy cover is consistent with elk exploiting improved nutritional conditions for foraging. The magnitude of selection for logged areas was 73% higher for elk at low population density, consistent with predictions from the ideal free distribution. Yet elk avoided these same areas during daytime for up to 28 years post logging and instead selected untreated forest, suggesting a role for cover to meet other life history requirements. Our results demonstrate that while landscape-scale disturbances can lead to increased selection by large herbivores and suggest that the improvement in foraging conditions can persist over short-term successional timescales, the magnitude of the benefits may not be equal across population densities. Further, the enduring avoidance of logging treatments during the daytime indicates a need for structurally intact forests and suggests that a mosaic of forest patches of varying successional stages and structural completeness is likely to be the most beneficial to large herbivores.


Subject(s)
Deer , Forests , Herbivory , Wildfires , Animals , Deer/physiology , Population Density
5.
New Phytol ; 234(3): 990-1002, 2022 05.
Article in English | MEDLINE | ID: mdl-35179778

ABSTRACT

Rapid virus proliferation can exert a powerful control on phytoplankton host populations, playing a significant role in marine biogeochemistry and ecology. We explore how marine lytic viruses impact phytoplankton succession, affecting host and nonhost populations. Using an in silico food web we conducted simulation experiments under a range of different abiotic and biotic conditions, exploring virus-host-grazer interactions and manipulating competition, allometry, motility and cyst cycles. Virus-host and predator-prey interactions, and interactions with competitors, generate bloom dynamics with a pronounced 'boom-and-busted' dynamic (BBeD) which leads to the suppression of otherwise potentially successful phytoplankton species. The BBeD is less pronounced at low nutrient loading through distancing of phytoplankton hosts, while high sediment loading and high nonhost biomass decrease the abundance of viruses through adsorption. Larger hosts are inherently more distanced, but motility increases virus attack, while cyst cycles promote spatial and temporal distancing. Virus control of phytoplankton bloom development appears more important than virus-induced termination of those blooms. This affects plankton succession - not only the growth of species infected by the virus, but also those that compete for the same resources and are collectively subjected to common grazer control. The role of viruses in structuring plankton communities via BBeDs can thus provide an explanation for the paradox of the plankton.


Subject(s)
Phytoplankton , Viruses , Ecology , Ecosystem , Food Chain , Plankton
6.
J Psychiatry Neurosci ; 46(4): E490-E499, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34609949

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a promising investigational approach for treatment-resistant depression. However, reports suggesting changes in personality with DBS for movement disorders have raised clinical and ethical concerns. We prospectively examined changes in personality dimensions and antidepressant response to subcallosal cingulate (SCC)-DBS for treatment-resistant depression. METHODS: Twenty-two patients with treatment-resistant depression underwent SCC-DBS. We used the NEO Five-Factor Inventory for personality assessment at baseline and every 3 months until 15 months post-DBS. We assessed depression severity monthly using the Hamilton Depression Rating Scale. RESULTS: We found a significant decrease in neuroticism (p = 0.002) and an increase in extraversion (p = 0.001) over time, showing a change toward normative data. Improvement on the Hamilton Depression Rating Scale was correlated with decreases in neuroticism at 6 months (p = 0.001) and 12 months (p < 0.001), and with an increase in extraversion at 12 months (p = 0.01). Changes on the Hamilton Depression Rating Scale over time had a significant covariate effect on neuroticism (p < 0.001) and extraversion (p = 0.001). Baseline openness and agreeableness predicted response to DBS at 6 (p = 0.006) and 12 months (p = 0.004), respectively. LIMITATIONS: Limitations included a small sample size, a lack of sham control and the use of subjective personality evaluation. CONCLUSION: We observed positive personality changes following SCC-DBS, with reduced neuroticism and increased extraversion related to clinical improvement in depression, suggesting a state effect. As well, pretreatment levels of openness and agreeableness may have predicted subsequent response to DBS. The NEO Five-Factor Inventory assessment may have a role in clinical decision-making and prognostic evaluation in patients with treatment-resistant depression who undergo SCC-DBS.


Subject(s)
Deep Brain Stimulation , Depression/psychology , Depression/therapy , Depressive Disorder, Treatment-Resistant/psychology , Depressive Disorder, Treatment-Resistant/therapy , Gyrus Cinguli , Personality , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
7.
Ecol Appl ; 31(7): e02405, 2021 10.
Article in English | MEDLINE | ID: mdl-34245619

ABSTRACT

Spatial capture-recapture (SCR) models have become the preferred tool for estimating densities of carnivores. Within this family of models are variants requiring identification of all individuals in each encounter (SCR), a subset of individuals only (generalized spatial mark-resight, gSMR), or no individual identification (spatial count or spatial presence-absence). Although each technique has been shown through simulation to yield unbiased results, the consistency and relative precision of estimates across methods in real-world settings are seldom considered. We tested a suite of models ranging from those only requiring detections of unmarked individuals to others that integrate remote camera, physical capture, genetic, and global positioning system (GPS) data into a hybrid model, to estimate population densities of black bears, bobcats, cougars, and coyotes. For each species, we genotyped fecal DNA collected with detection dogs during a 20-d period. A subset of individuals from each species was affixed with GPS collars bearing unique markings and resighted by remote cameras over 140 d contemporaneous with scat collection. Camera-based gSMR models produced density estimates that differed by <10% from genetic SCR for bears, cougars, and coyotes once important sources of variation (sex or behavioral status) were controlled for. For bobcats, SCR estimates were 33% higher than gSMR. The cause of the discrepancies in estimates was likely attributable to challenges designing a study compatible for species with disparate home range sizes and the difficulty of collecting sufficient data in a timeframe in which demographic closure could be assumed. Unmarked models estimated densities that varied greatly from SCR, but estimates became more consistent in models wherein more individuals were identifiable. Hybrid models containing all data sources exhibited the most precise estimates for all species. For studies in which only sparse data can be obtained and the strictest model assumptions are unlikely to be met, we suggest researchers use caution making inference from models lacking individual identity. For best results, we further recommend the use of methods requiring at least a subset of the population is marked and that multiple data sets are incorporated when possible.


Subject(s)
Coyotes , Lynx , Ursidae , Animals , Computer Simulation , Dogs , Population Density
9.
Ecol Appl ; 28(8): 2082-2091, 2018 12.
Article in English | MEDLINE | ID: mdl-30179283

ABSTRACT

Recurrent environmental changes often prompt animals to alter their behavior leading to predictable patterns across a range of temporal scales. The nested nature of circadian and seasonal behavior complicates tests for effects of rarer disturbance events like fire. Fire can dramatically alter plant community structure, with important knock-on effects at higher trophic levels, but the strength and timing of fire's effects on herbivores remain unclear. We combined prescribed fire treatments with fine-scale location data to quantify herbivore responses to fire across three temporal scales. Between 2001 and 2003, 26 stands of fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned; 27 similar stands were left untreated as experimental controls. Analyzing female elk (Cervus canadensis) locations across 21 yr (1996-2016), we found crepuscular, seasonal, and successional shifts in behavioral responses to fire. Elk displayed "commuting" behavior, avoiding burns during the day, but selecting them at night. Elk selection for burns was strongest in early summer and the relative probability of elk using burns peaked quickly (5 yr post burn) before gradually returning to pre-treatment levels (15 yr post burn). Our results demonstrate that fire history has complex, persistent effects on herbivore behavior, and suggest that herbivores benefit from heterogeneous landscapes containing a range of successional stages.


Subject(s)
Deer/physiology , Feeding Behavior , Fires , Herbivory , Abies , Animals , Circadian Rhythm , Female , Oregon , Pseudotsuga , Seasons
10.
Eur Arch Psychiatry Clin Neurosci ; 267(2): 135-147, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27277475

ABSTRACT

Symptom improvement in depression due to antidepressant treatment is highly variable and clinically unpredictable. Linking neuronal connectivity and genetic risk factors in predicting antidepressant response has clinical implications. Our investigation assessed whether indices of white matter integrity, serotonin transporter-linked polymorphism (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) val66met polymorphism predicted magnitude of depression symptom change following antidepressant treatment. Fractional anisotropy (FA) was used as an indicator of white matter integrity and was assessed in the uncinate fasciculus and superior longitudinal fasciculus using tract-based spatial statistics (TBSS) and probabilistic tractography. Forty-six medication-free patients with major depressive disorder participated in a diffusion tensor imaging scan prior to completing an 8-week treatment regime with citalopram or quetiapine XR. Indexed improvements in Hamilton Depression Rating Scale score from baseline to 8-week endpoint were used as an indicator of depression improvement. Carriers of the BDNF met allele exhibited lower FA values in the left uncinate fasciculus relative to val/val individuals [F(1, 40) = 7.314, p = 0.009]. Probabilistic tractography identified that higher FA in the left uncinate fasciculus predicted percent change in depression severity, with BDNF moderating this association [F(3, 30) = 3.923, p = 0.018]. An interaction between FA in the right uncinate fasciculus and 5-HTTLPR also predicted percent change in depression severity [F(5, 25) = 5.315, p = 0.002]. Uncorrected TBSS results revealed significantly higher FA in hippocampal portions of the cingulum bundle in responders compared to non-responders (p = 0.016). The predictive value of prefrontal and amygdala/hippocampal WM connectivity on antidepressant treatment response may be influenced by 5-HTTLPR and BDNF polymorphisms in MDD.


Subject(s)
Antipsychotic Agents/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Depressive Disorder, Major , Outcome Assessment, Health Care , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Adult , Antipsychotic Agents/administration & dosage , Citalopram/administration & dosage , Citalopram/pharmacology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Quetiapine Fumarate/administration & dosage , Quetiapine Fumarate/pharmacology , Selective Serotonin Reuptake Inhibitors/administration & dosage , Young Adult
11.
Proc Biol Sci ; 283(1833)2016 06 29.
Article in English | MEDLINE | ID: mdl-27358373

ABSTRACT

Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.


Subject(s)
Calcification, Physiologic , Haptophyta/metabolism , Seawater/chemistry , Hydrogen-Ion Concentration , Oceans and Seas , Photosynthesis
12.
Hum Psychopharmacol ; 31(2): 144-55, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26879101

ABSTRACT

OBJECTIVES: Genotype and drug pharmacology may contribute to variations in brain response to antidepressants. We examined the impact of two antidepressants with differential actions on serotonin transporter and the 5-HHTLPR-S/Lg polymorphisms on amygdala responses in major depressive disorder (MDD). METHODS: Caucasians with MDD were given either citalopram or quetiapine extended release for 8 weeks. Patients were genotyped for 5-HTTLPR. Clinical efficacy was assessed using the Hamilton Depression Rating Scale. fMRI responses to negative emotional faces were acquired at baseline, week 1 and week 8. The outcome measure was change in amygdala responses at week 8. RESULTS: Citalopram had no effect on amygdala responses in MDD patients with S/Lg alleles at weeks 1 and 8 compared with baseline, whereas it induced changes in amygdala responses in LL homozygotes. By contrast, quetiapine decreased amygdala responses at both time points in S/Lg carriers, and changes in amygdala responses at week 8 correlated with a reduction in depression scores. The small number of LL homozygotes in quetiapine group was a limitation. Efficacy of both treatments was comparable. CONCLUSIONS: These preliminary data suggest that pharmacological mechanisms and genetics need to be considered in the development of neuroimaging markers for the evaluation of antidepressant treatments.


Subject(s)
Amygdala/drug effects , Citalopram/therapeutic use , Depressive Disorder, Major/drug therapy , Polymorphism, Genetic , Quetiapine Fumarate/therapeutic use , Serotonin Plasma Membrane Transport Proteins/genetics , Adult , Aged , Amygdala/diagnostic imaging , Amygdala/physiopathology , Delayed-Action Preparations/therapeutic use , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Double-Blind Method , Female , Genotyping Techniques , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Serotonin Plasma Membrane Transport Proteins/metabolism , Treatment Outcome , White People/genetics , Young Adult
13.
Proc Biol Sci ; 282(1804): 20142604, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25716793

ABSTRACT

Human activity causes ocean acidification (OA) though the dissolution of anthropogenically generated CO2 into seawater, and eutrophication through the addition of inorganic nutrients. Eutrophication increases the phytoplankton biomass that can be supported during a bloom, and the resultant uptake of dissolved inorganic carbon during photosynthesis increases water-column pH (bloom-induced basification). This increased pH can adversely affect plankton growth. With OA, basification commences at a lower pH. Using experimental analyses of the growth of three contrasting phytoplankton under different pH scenarios, coupled with mathematical models describing growth and death as functions of pH and nutrient status, we show how different conditions of pH modify the scope for competitive interactions between phytoplankton species. We then use the models previously configured against experimental data to explore how the commencement of bloom-induced basification at lower pH with OA, and operating against a background of changing patterns in nutrient loads, may modify phytoplankton growth and competition. We conclude that OA and changed nutrient supply into shelf seas with eutrophication or de-eutrophication (the latter owing to pollution control) has clear scope to alter phytoplankton succession, thus affecting future trophic dynamics and impacting both biogeochemical cycling and fisheries.


Subject(s)
Biodiversity , Eutrophication , Phytoplankton/physiology , Seawater/chemistry , Carbonates/chemistry , Hydrogen-Ion Concentration , Models, Theoretical , Phytoplankton/growth & development
14.
J Phycol ; 50(4): 640-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-26988448

ABSTRACT

The combined consequences of the multi-stressors of pH and nutrient availability upon the growth of a marine diatom were investigated. Thalassiosira weissflogii was grown in N- or P-limited batch culture in sealed systems, with pH commencing at 8.2 ("extant" conditions) or 7.6 ("ocean acidification" [OA] conditions), and then pH was allowed to either drift with growth, or was held fixed. Results indicated that within the pH range tested, the stability of environmental pH rather than its value (i.e., OA vs. extant) fundamentally influenced biomass accumul-ation and C:N:P stoichiometry. Despite large changes in total alkalinity in the fixed pH systems, final biomass production was consistently greater in these systems than that in drifting pH systems. In drift systems, pH increased to exceed pH 9.5, a level of alkalinity that was inhibitory to growth. No statis-tically significant differences between pH treatments were measured for N:C, P:C or N:P ratios during nutrient-replete growth, although the diatom expre-ssed greater plasticity in P:C and N:P ratios than in N:C during this growth phase. During nutrient-deplete conditions, the capacity for uncoupled carbon fixa-tion at fixed pH was considerably greater than that measured in drift pH systems, leading to strong contrasts in C:N:P stoichiometry between these treatments. Whether environmental pH was stable or drifted directly influenced the extent of physiological stress. In contrast, few distinctions could be drawn between "extant" versus "OA" conditions for cell physiology.

15.
BMJ Open ; 14(1): e074155, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238174

ABSTRACT

OBJECTIVES: Logan local government area (LGA) in Queensland has the highest diabetes prevalence (6.5%) within Metro South Health (MSH). The study aimed to determine the burden of, and equity of access to secondary healthcare, for diabetic foot disease (DFD) for Logan residents to better inform healthcare services planning. DESIGN: A retrospective analysis of hospital admissions data between January 2018 and December 2021. SETTING, PARTICIPANTS: All episodes of care for DFD provided by MSH hospitals to patients with a residential address in the three LGAs serving the region were included. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome was number of episodes of care for DFD by LGA of residence and hospital of presentation. Secondary outcomes were DFD-related hospital occupied bed days and number of lower extremity amputations. RESULTS: Among residents in the MSH region, almost half of all episodes of care (47%) and bed days (48%) for DFD were for patients residing in Logan LGA. 40% of episodes of care, 57% of bed days and 73% of lower extremity amputations for DFD for these patients occurred outside of Logan LGA. These findings led to the planning of an integrated model of care for DFD at Logan hospital to improve and make care available locally. CONCLUSIONS: Our study suggests that Logan residents with DFD had poor access to care despite the highest burden. Analysing epidemiology of care for DFD with an equity lens and highlighting gaps in service delivery is paramount to addressing the inequity paradigm.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Foot Diseases , Humans , Diabetic Foot/epidemiology , Diabetic Foot/surgery , Queensland/epidemiology , Retrospective Studies , Patients , Health Services Accessibility , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy
16.
World J Biol Psychiatry ; 25(3): 175-187, 2024 03.
Article in English | MEDLINE | ID: mdl-38185882

ABSTRACT

OBJECTIVES: This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD). METHODS: Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation. RESULTS: The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model. CONCLUSIONS: CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration: ClinicalTrials.gov (#NCT01983904).


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Humans , Deep Brain Stimulation/methods , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/therapy , Bayes Theorem , Brain/diagnostic imaging , Brain/pathology , Multimodal Imaging
17.
Nature ; 447(7147): 999-1002, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17581584

ABSTRACT

The flux of organic material sinking to depth is a major control on the inventory of carbon in the ocean. To first order, the oceanic system is at equilibrium such that what goes down must come up. Because the export flux is difficult to measure directly, it is routinely estimated indirectly by quantifying the amount of phytoplankton growth, or primary production, fuelled by the upward flux of nitrate. To do so it is necessary to take into account other sources of biologically available nitrogen. However, the generation of nitrate by nitrification in surface waters has only recently received attention. Here we perform the first synthesis of open-ocean measurements of the specific rate of surface nitrification and use these to configure a global biogeochemical model to quantify the global role of nitrification. We show that for much of the world ocean a substantial fraction of the nitrate taken up is generated through recent nitrification near the surface. At the global scale, nitrification accounts for about half of the nitrate consumed by growing phytoplankton. A consequence is that many previous attempts to quantify marine carbon export, particularly those based on inappropriate use of the f-ratio (a measure of the efficiency of the 'biological pump'), are significant overestimates.


Subject(s)
Nitrites/metabolism , Seawater/chemistry , Carbon/metabolism , Ecosystem , Nitrites/analysis , Nitrogen/metabolism , Oceans and Seas , Plankton/metabolism , Seawater/analysis
18.
Parkinsonism Relat Disord ; 110: 105397, 2023 05.
Article in English | MEDLINE | ID: mdl-37060621

ABSTRACT

INTRODUCTION: Rhythmic beta activity in the subthalamic nucleus (STN) local field potential (LFP) is associated with Parkinson disease (PD) severity, though not all studies have found this relationship. We investigated whether aperiodic 'noise' elements of LFP, specifically slope of the 1/f broadband, predict PD motor symptoms and outcomes of STN-DBS. METHODS: We studied micro-LFP from 19 PD patients undergoing STN-DBS, relating the aperiodic 1/f slope and the periodic beta oscillation components to motor severity using the UPDRS-III and improvement with DBS at 1 year. RESULTS: Beta power, not 1/f slope, independently predicted baseline UPDRS-III (r = 0.425, p = 0.020; r = -0.434, p = 0.032, respectively), but multiple regression using both predicted better (F (2, 16) = 6.621, p = 0.008, R2 = 0.453). Only multiple regression using both slope and beta power predicted improvement in UPDRS-III at 1 year post-operatively (F (2, 15) = 6.049, R2 = 0.446, p = 0.012). CONCLUSIONS: Both beta synchronization and slope of the 1/f broadband are informative of motor symptoms in PD and predict response to STN-DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Subthalamic Nucleus/physiology , Treatment Outcome
19.
J Orthop Case Rep ; 12(4): 101-103, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36380987

ABSTRACT

Introduction: The Exeter stem by Stryker is a polished, double wedge, tapered,and stainless steel cemented implant that is known to have high mechanical strength, and therefore can carry a significant load. Case Report: Due to the rare nature of fractures of this type of implant, its success and effectiveness within hip arthroplasty, the Exeter stem has become one of the most commonly used surgical treatment regimens for hip fractures. At present, there are only a handful of published papers detailing a fracture through an Exeter stem implant. Conclusion: The current case report documents a rare case of a fractured Exeter V40 stem and its subsequent treatment.

20.
Ambio ; 51(2): 398-410, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34628596

ABSTRACT

Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region's climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over coming decades.


Subject(s)
Methane , Nitrous Oxide , Arctic Regions , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL