Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33891876

ABSTRACT

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Chaperone-Mediated Autophagy/physiology , Neurons/metabolism , Proteostasis , Aging/pathology , Alzheimer Disease/pathology , Animals , Brain/pathology , Casein Kinase I/genetics , Chaperone-Mediated Autophagy/genetics , Disease Models, Animal , Female , Male , Mice , Neurons/pathology , Proteome
2.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441502

ABSTRACT

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Subject(s)
Monoacylglycerol Lipases , Neurodegenerative Diseases , Rats , Mice , Animals , Monoacylglycerol Lipases/metabolism , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/drug therapy , Positron-Emission Tomography/methods , Inflammation , Drug Development , Enzyme Inhibitors/pharmacology
3.
Chimia (Aarau) ; 78(7-8): 499-512, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39221845

ABSTRACT

The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs. The pursuit of new therapeutic agents has been enhanced by the creation of specialized labeled chemical probes, which aid in target localization, mechanistic studies, assay development, and the establishment of biomarkers for target engagement. By fusing medicinal chemistry with chemical biology in a comprehensive, translational end-to-end drug discovery strategy, we have expedited the development of novel therapeutics. Additionally, this strategy promises to foster highly productive partnerships between industry and academia, as will be illustrated through various examples.


Subject(s)
Chemistry, Pharmaceutical , Drug Discovery , Endocannabinoids , Endocannabinoids/metabolism , Endocannabinoids/chemistry , Humans , Drug Industry , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Drug Development , Academia
4.
Cell Mol Life Sci ; 76(6): 1081-1092, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30523362

ABSTRACT

The blood-brain barrier is a dynamic multicellular interface that regulates the transport of molecules between the blood circulation and the brain parenchyma. Proteins and peptides required for brain homeostasis cross the blood-brain barrier via transcellular transport, but the mechanisms that control this pathway are not well characterized. Here, we highlight recent studies on intracellular transport and transcytosis across the blood-brain barrier. Endothelial cells at the blood-brain barrier possess an intricate endosomal network that allows sorting to diverse cellular destinations. Internalization from the plasma membrane, endosomal sorting, and exocytosis all contribute to the regulation of transcytosis. Transmembrane receptors and blood-borne proteins utilize different pathways and mechanisms for transport across brain endothelial cells. Alterations to intracellular transport in brain endothelial cells during diseases of the central nervous system contribute to blood-brain barrier disruption and disease progression. Harnessing the intracellular sorting mechanisms at the blood-brain barrier can help improve delivery of biotherapeutics to the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelial Cells/metabolism , Transcytosis , Animals , Biological Transport , Brain/cytology , Cell Membrane/metabolism , Endosomes/metabolism , Humans , Models, Biological
5.
Brain ; 137(Pt 10): 2834-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085375

ABSTRACT

The severity of tau pathology in Alzheimer's disease brain correlates closely with disease progression. Tau immunotherapy has therefore been proposed as a new therapeutic approach to Alzheimer's disease and encouraging results have been obtained by active or passive immunization of tau transgenic mice. This work investigates the mechanism by which immunotherapy can impact tau pathology. We demonstrate the development of Alzheimer's disease-like tau pathology in a triple transgenic mouse model of Alzheimer's disease and show that tau/pS422 is present in membrane microdomains on the neuronal cell surface. Chronic, peripheral administration of anti-tau/pS422 antibody reduces the accumulation of tau pathology. The unequivocal presence of anti-tau/pS422 antibody inside neurons and in lysosomes is demonstrated. We propose that anti-tau/pS422 antibody binds to membrane-associated tau/pS422 and that the antigen-antibody complexes are cleared intracellularly, thereby offering one explanation for how tau immunotherapy can ameliorate neuronal tau pathology.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/pathology , Antibodies/metabolism , tau Proteins/immunology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Antibodies, Monoclonal/metabolism , Blotting, Western , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Humans , Image Processing, Computer-Assisted , Lysosomes/metabolism , Lysosomes/pathology , Membrane Microdomains/pathology , Mice , Mice, Transgenic , Phosphorylation , Sarcosine/analogs & derivatives , Sarcosine/chemistry
6.
J Nucl Med ; 65(2): 300-305, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38164615

ABSTRACT

This study aimed to evaluate (R)-[18F]YH134 as a novel PET tracer for imaging monoacylglycerol lipase (MAGL). Considering the ubiquitous expression of MAGL throughout the whole body, the impact of various MAGL inhibitors on (R)-[18F]YH134 brain uptake and its application in brain-periphery crosstalk were explored. Methods: MAGL knockout and wild-type mice were used to evaluate (R)-[18F]YH134 in in vitro autoradiography and PET experiments. To explore the impact of peripheral MAGL occupancy on (R)-[18F]YH134 brain uptake, PET kinetics with an arterial input function were studied in male Wistar rats under baseline and blocking conditions. Results: In in vitro autoradiography, (R)-[18F]YH134 revealed a heterogeneous distribution pattern with high binding to MAGL-rich brain regions in wild-type mouse brain slices, whereas the radioactive signal was negligible in MAGL knockout mouse brain slices. The in vivo brain PET images of (R)-[18F]YH134 in wild-type and MAGL knockout mice demonstrated its high specificity and selectivity in mouse brain. A Logan plot with plasma input function was applied to estimate the distribution volume (V T) of (R)-[18F]YH134. V T was significantly reduced by a brain-penetrant MAGL inhibitor but was unchanged by a peripherally restricted MAGL inhibitor. The MAGL target occupancy in the periphery was estimated using (R)-[18F]YH134 PET imaging data from the brain. Conclusion: (R)-[18F]YH134 is a highly specific and selective PET tracer with favorable kinetic properties for imaging MAGL in rodent brain. Our results showed that blocking of the peripheral target influences brain uptake but not the V T of (R)-[18F]YH134. (R)-[18F]YH134 can be used for estimating the dose of MAGL inhibitor at half-maximal peripheral target occupancy.


Subject(s)
Monoacylglycerol Lipases , Neuroimaging , Rats , Mice , Male , Animals , Monoacylglycerol Lipases/metabolism , Rats, Wistar , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Mice, Knockout , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
7.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570068

ABSTRACT

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Subject(s)
Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
8.
J Med Chem ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360636

ABSTRACT

Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of the endogenous signaling ligand 2-arachidonoylglycerol, a neuroprotective endocannabinoid intimately linked to central nervous system (CNS) disorders associated with neuroinflammation. In the quest for novel MAGL inhibitors, a focused screening approach on a Roche library subset provided a reversible benzoxazinone hit exhibiting high ligand efficiency. The subsequent design of the three-dimensional cis-hexahydro-pyrido-oxazinone (cis-HHPO) moiety as benzoxazinone replacement enabled the combination of high MAGL potency with favorable ADME properties. Through enzymatic resolution an efficient synthetic route of the privileged cis-(4R,8S) HHPO headgroup was established, providing access to the highly potent and selective MAGL inhibitor 7o. Candidate molecule 7o matches the target compound profile of CNS drugs as it achieves high CSF exposures after systemic administration in rodents. It engages with the target in the brain and modulates neuroinflammatory processes, thus holding great promise for the treatment of CNS disorders.

9.
Nat Commun ; 14(1): 8039, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052772

ABSTRACT

Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.


Subject(s)
Monoacylglycerol Lipases , Monoglycerides , Animals , Mice , Rimonabant , Endocannabinoids , Analgesics/pharmacology , Receptor, Cannabinoid, CB1 , Mice, Inbred C57BL
10.
PLoS One ; 17(9): e0268590, 2022.
Article in English | MEDLINE | ID: mdl-36084029

ABSTRACT

Chronic inflammation and blood-brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood-brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood-brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood-brain barrier dysfunction caused by inflammatory insults.


Subject(s)
Lipopolysaccharides , Monoacylglycerol Lipases , Animals , Arachidonic Acid/metabolism , Cyclooxygenase 2 , Endocannabinoids/metabolism , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacology , Glycerol/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Monoacylglycerol Lipases/metabolism , Monoglycerides , Prostaglandins/metabolism
11.
J Med Chem ; 65(3): 2191-2207, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35089028

ABSTRACT

Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.


Subject(s)
Brain/diagnostic imaging , Enzyme Inhibitors/chemistry , Monoacylglycerol Lipases/metabolism , Neuroimaging/methods , Radiopharmaceuticals/chemistry , Animals , Brain/metabolism , Carbon Radioisotopes/chemistry , Crystallography, X-Ray , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Mice , Molecular Conformation , Monoacylglycerol Lipases/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Tissue Distribution
12.
Nucl Med Biol ; 108-109: 24-32, 2022.
Article in English | MEDLINE | ID: mdl-35248850

ABSTRACT

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Subject(s)
Monoacylglycerol Lipases , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Endocannabinoids/metabolism , Enzyme Inhibitors/metabolism , Mice , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Morpholines/metabolism , Positron-Emission Tomography/methods
13.
Eur J Med Chem ; 243: 114750, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36137365

ABSTRACT

Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C]RO7284390) showed promising results warranting further clinical evaluation.


Subject(s)
Monoacylglycerol Lipases , Tomography, X-Ray Computed , Animals , Mice , Humans , Monoacylglycerol Lipases/metabolism , Positron-Emission Tomography/methods , Brain/metabolism , Kinetics , Enzyme Inhibitors/chemistry
14.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Article in English | MEDLINE | ID: mdl-34675436

ABSTRACT

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Coronavirus 3C Proteases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microvessels/metabolism , SARS-CoV-2/metabolism , Animals , Blood-Brain Barrier/pathology , Brain/pathology , Chlorocebus aethiops , Coronavirus 3C Proteases/genetics , Cricetinae , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mesocricetus , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microvessels/pathology , SARS-CoV-2/genetics , Vero Cells
16.
Nat Commun ; 11(1): 6077, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257685

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has become an empowering technology to profile the transcriptomes of individual cells on a large scale. Early analyses of differential expression have aimed at identifying differences between subpopulations to identify subpopulation markers. More generally, such methods compare expression levels across sets of cells, thus leading to cross-condition analyses. Given the emergence of replicated multi-condition scRNA-seq datasets, an area of increasing focus is making sample-level inferences, termed here as differential state analysis; however, it is not clear which statistical framework best handles this situation. Here, we surveyed methods to perform cross-condition differential state analyses, including cell-level mixed models and methods based on aggregated pseudobulk data. To evaluate method performance, we developed a flexible simulation that mimics multi-sample scRNA-seq data. We analyzed scRNA-seq data from mouse cortex cells to uncover subpopulation-specific responses to lipopolysaccharide treatment, and provide robust tools for multi-condition analysis within the muscat R package.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Animals , Cerebellar Cortex/drug effects , Cerebellar Cortex/metabolism , Cluster Analysis , Computational Biology , Computer Simulation , Lipopolysaccharides/adverse effects , Male , Mice , Models, Statistical , RNA, Small Cytoplasmic , Signal Transduction , Software
17.
Biol Cell ; 100(4): 243-52, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18042042

ABSTRACT

BACKGROUND INFORMATION: Directional cell migration is a fundamental feature of embryonic development, the inflammatory response and the metastatic spread of cancer. Migrating cells have a polarized morphology with an asymmetric distribution of signalling molecules and of the actin and microtubule cytoskeletons. The dynamic reorganization of the actin cytoskeleton provides the major driving force for migration in all mammalian cell types, but microtubules also play an important role in many cells, most notably neuronal precursors. RESULTS: We previously showed, using primary fibroblasts and astrocytes in in vitro scratch-induced migration assays, that the accumulation of APC (adenomatous polyposis coli; the APC tumour suppressor protein) at microtubule plus-ends promotes their association with the plasma membrane at the leading edge. This is required for polarization of the microtubule cytoskeleton during directional migration. Here, we have examined the organization of microtubules in the soma of migrating neurons and fibroblasts. CONCLUSIONS: We find that APC, through a direct interaction with the NPC (nuclear pore complex) protein Nup153 (nucleoporin 153), promotes the association of microtubules with the nuclear membrane.


Subject(s)
Adenomatous Polyposis Coli Protein/metabolism , Cell Movement , Cell Polarity , Microtubules/metabolism , Nuclear Envelope/metabolism , Adenomatous Polyposis Coli , Adenomatous Polyposis Coli Protein/analysis , Animals , Astrocytes/cytology , Cell Culture Techniques , Centrosome/metabolism , Fibroblasts/cytology , HeLa Cells , Humans , Microscopy, Confocal , Neurons/cytology , Neurons/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Rats , Sequence Deletion
19.
J Vis Exp ; (129)2017 11 16.
Article in English | MEDLINE | ID: mdl-29286366

ABSTRACT

The blood-brain barrier (BBB) is a dynamic multicellular interface that regulates the transport of molecules between the circulation and the brain. Transcytosis across the BBB regulates the delivery of hormones, metabolites, and therapeutic antibodies to the brain parenchyma. Here, we present a protocol that combines immunofluorescence of free-floating sections with laser scanning confocal microscopy and image analysis to visualize subcellular organelles within endothelial cells at the BBB. Combining this data-set with 3D image analysis software allows for the semi-automated segmentation and quantification of capillary volume and surface area, as well as the number and intensity of intracellular organelles at the BBB. The detection of mouse endogenous immunoglobulin (IgG) within intracellular vesicles and their quantification at the BBB is used to illustrate the method. This protocol can potentially be applied to the investigation of the mechanisms controlling BBB transcytosis of different molecules in vivo.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Transcytosis/physiology , Animals , Brain/blood supply , Brain/diagnostic imaging , Mice , Mice, Inbred C57BL
20.
Cell Rep ; 21(11): 3256-3270, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29241551

ABSTRACT

Transcytosis across the blood-brain barrier (BBB) regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs) remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab) sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab) sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Cytoplasmic Structures/metabolism , Endothelial Cells/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Blood-Brain Barrier/ultrastructure , Brain/ultrastructure , Cytoplasmic Structures/ultrastructure , Endothelial Cells/ultrastructure , Female , Fluorescent Dyes/chemistry , Gene Expression , Genes, Reporter , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Mice , Mice, Inbred C57BL , Optical Imaging , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Transcytosis , rab GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL