Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
FEBS J ; 272(17): 4521-31, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16128820

ABSTRACT

Methylglyoxal is the most important intracellular glycation agent, formed nonenzymatically from triose phosphates during glycolysis in eukaryotic cells. Methylglyoxal-derived advanced glycation end-products are involved in neurodegenerative disorders (Alzheimer's, Parkinson's and familial amyloidotic polyneurophathy) and in the clinical complications of diabetes. Research models for investigating protein glycation and its relationship to methylglyoxal metabolism are required to understand this process, its implications in cell biochemistry and their role in human diseases. We investigated methylglyoxal metabolism and protein glycation in Saccharomyces cerevisiae. Using a specific antibody against argpyrimidine, a marker of protein glycation by methylglyoxal, we found that yeast cells growing on d-glucose (100 mM) present several glycated proteins at the stationary phase of growth. Intracellular methylglyoxal concentration, determined by a specific HPLC based assay, is directly related to argpyrimidine formation. Moreover, exposing nongrowing yeast cells to a higher d-glucose concentration (250 mM) increases methylglyoxal formation rate and argpyrimidine modified proteins appear within 1 h. A kinetic model of methylglyoxal metabolism in yeast, comprising its nonenzymatic formation and enzymatic catabolism by the glutathione dependent glyoxalase pathway and aldose reductase, was used to probe the role of each system parameter on methylglyoxal steady-state concentration. Sensitivity analysis of methylglyoxal metabolism and studies with gene deletion mutant yeast strains showed that the glyoxalase pathway and aldose reductase are equally important for preventing protein glycation in Saccharomyces cerevisiae.


Subject(s)
Glycoproteins/chemistry , Glycoproteins/metabolism , Ornithine/analogs & derivatives , Pyrimidines/biosynthesis , Pyruvaldehyde/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Deletion , Genes, Fungal , Glycoproteins/genetics , Glycosylation , Humans , Kinetics , Models, Biological , Ornithine/biosynthesis , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
2.
Biochem J ; 364(Pt 1): 1-14, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11988070

ABSTRACT

Glycation of proteins leads to the formation of early glycation adducts (fructosamine derivatives) and advanced glycation endproducts (AGEs). Formation of AGEs has been linked to the development of cataract, diabetic complications, uraemia, Alzheimer's disease and other disorders. AGEs are a group of compounds of diverse molecular structure and biological function. To characterize AGE-modified proteins used in studies of structural and functional effects of glycation, an assay was developed that surveys the content of early and advanced glycation adducts in proteins. The assay procedure involved enzymic hydrolysis of protein substrate, derivatization of the hydrolysate with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and HPLC of the resulting adducts with fluorimetric detection. Structural isomers of methylglyoxal-derived hydroimidazolone, glyoxal-derived hydroimidazolone, 3-deoxyglucosone-derived hydroimidazolone and N(delta)-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-tetrahydropyrimidin-2-yl)-ornithine (THP) were determined for the first time. AGEs with intrinsic fluorescence (argpyrimidine, pentosidine) were assayed without derivatization. Limits of detection were 2-17 pmol and levels of recovery were 50-99%, depending on the analyte. The AQC assay resolved structural and epimeric isomers of methylglyoxal-derived hydroimidazolones and THP. Hydroimidazolones, THP and argpyrimidine were AGEs of short-to-intermediate stability under physiological conditions, with half-lives of 1-2 weeks. Their measurement provides further insight into the glycation process. The assay was applied to the characterization of human serum albumin minimally and highly modified by N(epsilon)-carboxymethyl-lysine and N(epsilon)-(1-carboxyethyl)-lysine.


Subject(s)
Biochemistry/methods , Chromatography/methods , Glycation End Products, Advanced/analysis , Glycation End Products, Advanced/chemistry , Lysine/analogs & derivatives , Aminoquinolines/chemistry , Carbamates/chemistry , Chromatography, High Pressure Liquid , Glucose/chemistry , Indicators and Reagents/chemistry , Lysine/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL