Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Br J Cancer ; 115(9): 1069-1077, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27673365

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors, such as crizotinib and erlotinib, are widely used to treat non-small-cell lung cancer, but after initial response, relapse is common because of the emergence of resistance through multiple mechanisms. Here, we investigated whether a frontline combination with an HSP90 inhibitor could delay the emergence of resistance to these inhibitors in preclinical lung cancer models. METHODS: The HSP90 inhibitor, onalespib, was combined with either crizotinib or erlotinib in ALK- or EGFR-activated xenograft models respectively (H2228, HCC827). RESULTS: In both models, after initial response to the monotherapy kinase inhibitors, tumour relapse was observed. In contrast, tumour growth remained inhibited when treated with an onalespib/kinase inhibitor combination. Analysis of H2228 tumours, which had relapsed on crizotinib monotherapy, identified a number of clinically relevant crizotinib resistance mechanisms, suggesting that HSP90 inhibitor treatment was capable of suppressing multiple mechanisms of resistance. Resistant cell lines, derived from these tumours, retained sensitivity to onalespib (proliferation and signalling pathways were inhibited), indicating that, despite their resistance to crizotinib, they were still sensitive to HSP90 inhibition. CONCLUSIONS: Together, these preclinical data suggest that frontline combination with an HSP90 inhibitor may be a method for delaying the emergence of resistance to targeted therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Isoindoles/administration & dosage , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/prevention & control , Protein Kinase Inhibitors/administration & dosage , Animals , Cell Line, Tumor , Crizotinib , Erlotinib Hydrochloride/administration & dosage , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Male , Mice, Inbred BALB C , Mice, SCID , Neoadjuvant Therapy/methods , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Xenograft Model Antitumor Assays
2.
Breast Cancer Res Treat ; 131(1): 49-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21336598

ABSTRACT

The purpose of this article is to determine the tumorigenic potential of estradiol treatment (E2) when combined with either progesterone (P4) or medroxyprogesterone acetate (MPA) in normal luminal human breast cells (HBE) and in human breast cancer cells (T47-D, MCF-7). Proliferation profiles were evaluated, along with the gene transactivation activity between the progesterone and glucocorticoid receptors (PR, GR) in HBE, T47-D, and MCF-7 cells treated by E2 + P4 or E2 + MPA. High throughput transcriptome analysis was performed on RNA from HBE cells treated by E2, E2 + MPA and E2 + P4. GR content was analyzed in normal breast cells as well. In HBE cells, E2 + P4 treatment was antiproliferative and promoted cellular differentiation. In contrast, E2 + MPA displayed mitogenic, antiapoptotic effects in HBE cells and did not influence cellular differentiation. The effect of P4 and MPA on cell proliferation was, however, variable in breast cancer cells. In cells containing GR or/and PR, MPA decreased proliferation whereas P4 antiproliferative effect needed the presence of PR. In HBE cells, the regulation of genes by E2 + P4, and E2 + MPA was significantly different, particularly in cell proliferation and cell death gene families. Further analysis revealed a modulation of the glucocorticoid receptor gene expression pathway by E2 + MPA. Predominant MPA glucocorticoid activity in normal and breast cancer cells was demonstrated using a glucocorticoid antagonist and the down-regulation of the GR by RNA interference. In normal luminal breast cells and in breast cancer cells, P4 and MPA combined with E2 treatment have opposing mitogenic effects due to GR. The consequences of MPA glucocorticoid potencies as well as the importance of GR in breast tissue merit a reappraisal.


Subject(s)
Estradiol/pharmacology , Medroxyprogesterone Acetate/pharmacology , Progesterone/pharmacology , Receptors, Glucocorticoid/metabolism , Receptors, Progesterone/metabolism , Adolescent , Adult , Breast , Breast Neoplasms , Carrier Proteins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing , Hormone Replacement Therapy/methods , Humans , Norpregnadienes/pharmacology , RNA Interference , RNA, Small Interfering , Receptors, Estrogen/metabolism , Steroids , Transcriptome , Young Adult
3.
Hum Reprod ; 27(9): 2785-98, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22740493

ABSTRACT

BACKGROUND: Antiprogestins are of growing interest for the development of new treatments in the gynecological field. Ulipristal acetate (UPA) is a progesterone receptor (PR) modulator considered for long-term administration in contraception and is currently being registered for the treatment of uterine fibroids. In light of the influences of hormonal dysfunction in breast pathologies, the secondary consequences of chronic UPA therapy need to be established. The aim of this study was to determine UPA actions mediated by PR and glucocorticoid receptor (GR) in normal and transformed breast. METHODS: UPA, progesterone (P) and dexamethasone (DEX) effects were observed on PR and GR responsive genes and on proliferation and apoptosis of normal human breast epithelial (HBE) and breast cancer cells. Human normal breast tissue samples were xenografted in athymic mice and treated with estradiol (E2), or E2 + P, or E2 + P + UPA. RESULTS: Analysis of PR and GR reporter gene transactivation and their respective endogenous target genes indicated that UPA exerted anti-progestational and anti-glucocorticoid activity in both types of cells with a more pronounced effect in cancer cells. When combined with P or DEX, UPA limits the proliferation of HBE cells but increases growth in breast cancer cell lines. UPA administration had no impact on the mitotic index on xenografted human breast tissue exposed to gonadal hormones at similar concentrations to those present in normal women. CONCLUSIONS: Although further clinical trials are required to confirm that the results from our experimental models can be extrapolated to women treated with UPA, they suggest that such treatment would not be deleterious to normal breast tissue at least for a cycle (28 days) of continuous administration.


Subject(s)
Breast/drug effects , Breast/pathology , Contraceptive Agents/pharmacology , Norpregnadienes/pharmacology , Adolescent , Adult , Animals , Apoptosis Regulatory Proteins/biosynthesis , Breast/metabolism , Cyclin A/biosynthesis , Dexamethasone/pharmacology , Epithelial Cells/drug effects , Estradiol/metabolism , Fatty Acid Synthase, Type I/biosynthesis , Female , Genes, Reporter , Humans , Ki-67 Antigen/biosynthesis , Leiomyoma/metabolism , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Membrane Proteins/biosynthesis , Mice , Mice, Nude , Middle Aged , Progesterone/pharmacology , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Receptors, Glucocorticoid/metabolism , Transcriptional Activation , Transplantation, Heterologous
4.
Breast Cancer Res Treat ; 130(1): 1-10, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21818591

ABSTRACT

Stress enhances glucocorticoid (GC) synthesis, which alters inflammation and immune responses, as well as cellular proliferation and apoptosis in a number of tissues. Increasingly, stress has been associated with cancer progression, and in particular in breast cancer. Consequently, an operational glucocorticoid receptor system in breast tissue influences breast cancer development. In this review, we summarize the data on the GC/GR system in normal and tumoral breast tissue. We also review the molecular mechanisms by which GCs control apoptosis and proliferation in breast cancer models and how GCs alter the chemotherapy of breast cancer treatment when used in combination. Finally, we discuss the participation of GR in breast tumorigenesis under hormone replacement therapy.


Subject(s)
Breast Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Breast/cytology , Breast/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Glucocorticoids/therapeutic use , Humans , Progestins/metabolism , Receptor Cross-Talk , Receptors, Estrogen/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Progesterone/metabolism , Risk
5.
Mol Cancer Ther ; 20(10): 1757-1768, 2021 10.
Article in English | MEDLINE | ID: mdl-34330842

ABSTRACT

The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with BRAF or RAS mutations. In vivo, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both in vitro and in vivo models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I-II clinical trial in patients with advanced solid tumors (NCT03520075).


Subject(s)
Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Movement , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387469

ABSTRACT

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacokinetics , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Mas , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 19(2): 525-539, 2020 02.
Article in English | MEDLINE | ID: mdl-31748345

ABSTRACT

The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/analysis , MAP Kinase Signaling System/drug effects , Animals , Humans , Male , Mice , Mice, Nude , Phosphorylation
8.
Carcinogenesis ; 30(3): 432-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19126655

ABSTRACT

Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after gamma-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early gamma-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-alpha death receptor pathways mediate the delayed cell death observed after gamma-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-alpha permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-alpha, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation.


Subject(s)
Apoptosis/radiation effects , Breast Neoplasms/metabolism , Receptors, Death Domain/physiology , Breast Neoplasms/pathology , Bystander Effect , Cell Death/radiation effects , Cell Line, Tumor/radiation effects , Fas Ligand Protein/physiology , Female , Gamma Rays , Humans , Signal Transduction/physiology , TNF-Related Apoptosis-Inducing Ligand/physiology , Tumor Necrosis Factor-alpha/physiology
9.
Chem Sci ; 9(45): 8608-8618, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30568786

ABSTRACT

Target engagement is a key concept in drug discovery and its direct measurement can provide a quantitative understanding of drug efficacy and/or toxicity. Failure to demonstrate target occupancy in relevant cells and tissues has been recognised as a contributing factor to the low success rate of clinical drug development. Several techniques are emerging to quantify target engagement in cells; however, in situ measurements remain challenging, mainly due to technical limitations. Here, we report the development of a non-covalent clickable probe, based on SCH772984, a slow off-rate ERK1/2 inhibitor, which enabled efficient pull down of ERK1/2 protein via click reaction with tetrazine tagged agarose beads. This was used in a competition setting to measure relative target occupancy by selected ERK1/2 inhibitors. As a reference we used the cellular thermal shift assay, a label-free biophysical assay relying solely on ligand-induced thermodynamic stabilization of proteins. To validate the EC50 values measured by both methods, the results were compared with IC50 data for the phosphorylation of RSK, a downstream substrate of ERK1/2 used as a functional biomarker of ERK1/2 inhibition. We showed that a slow off-rate reversible probe can be used to efficiently pull down cellular proteins, significantly extending the potential of the approach beyond the need for covalent or photoaffinity warheads.

10.
J Med Chem ; 61(11): 4978-4992, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29775310

ABSTRACT

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Subject(s)
Biocatalysis/drug effects , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Humans , Mice , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Models, Molecular , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics
11.
Cancer Res ; 65(1): 300-8, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15665307

ABSTRACT

In order to understand why the angiogenesis inhibitor thrombospondin-1 (TSP1) is often, although not always, associated with prostatic tumors, we have investigated its relationship with the testosterone and the vasculature on which both normal and tumorigenic prostatic epithelia depend. In vivo, androgen withdrawal led to increased TSP1 production and decreased vascularization in the normal rat prostate which was reversed by androgen replacement. Androgen repression of TSP1 production occurred at the transcriptional level and was dependent on the presence of the first intron of the TSP1 gene. In an experimental model of prostate tumorigenesis, TSP1, when delivered by admixed stromal fibroblasts, markedly delayed LNCaP tumor growth and limited tumor vascularization. However, prolonged exposure to TSP1 resulted in the growth of tumors secreting high levels of vascular endothelial growth factor in the bloodstream of tumor-bearing animals and tumor growth was no longer sensitive to TSP1 inhibitory effects. Clinical evidence also suggested that prostate carcinomas are able to adapt to escape the antiangiogenic effects of TSP1. In human androgen-dependent localized prostate carcinomas, TSP1 expression was inversely correlated with blood vessel density. Androgen deprivation in patients with hormone-responsive tumors led to increased TSP1 expression and vascular regression. In contrast, despite a sustained expression in the tumor bed, TSP1 was no longer associated with decreased vascularization in hormone-refractory prostate tumors. Overall, these results suggest that the high in situ TSP1 exposure triggered by androgen deprivation in patients with prostate cancer could lead to early tumor resistance. Such patients could benefit from a combination of androgen deprivation and antiangiogenic therapy in order to minimize the induction of such tumor escape.


Subject(s)
Androgens/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation/drug effects , Neovascularization, Pathologic/prevention & control , Neovascularization, Physiologic/drug effects , Prostatic Neoplasms/blood supply , Thrombospondin 1/genetics , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Orchiectomy , Prostate , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Rats , Rats, Sprague-Dawley , Thrombospondin 1/drug effects , Vascular Endothelial Growth Factor A/analysis
12.
Cancer Res ; 63(14): 3919-22, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12873985

ABSTRACT

In the past few years, several laboratories have developed antiangiogenic molecules that starve tumors by targeting their vasculature and we have shown that, when produced in tumors, the antiangiogenic molecule thrombospondin-1 (TSP1) reduces the vascularization and delays tumor onset. Yet over time, tumor cells producing active TSP1 do eventually form exponentially growing tumors. These tumors are composed of cells secreting unusually high amounts of the angiogenic stimulator vascular endothelial growth factor (VEGF) that are sufficient to overcome the inhibitory TSP1. Here, we use short double-stranded RNA (siRNA) to trigger RNA interference and thereby impair the synthesis of VEGF and ask if this inability to produce VEGF prevents the development of TSP1 resistance. Systemic in vivo administration of crude anti-VEGF siRNA reduced the growth of unaltered fibrosarcoma tumor cells, and when the anti-VEGF siRNA was expressed from tumor cells themselves, such inhibition was synergistic with the inhibitory effects derived from TSP1 secretion by the tumor cells. Anti-VEGF siRNA delayed the emergence of TSP1-resistant tumors and strikingly reduced their subsequent growth rate.


Subject(s)
Endothelial Growth Factors/antagonists & inhibitors , Fibrosarcoma/blood supply , Lymphokines/antagonists & inhibitors , Neovascularization, Pathologic/prevention & control , RNA, Small Interfering/genetics , Thrombospondin 1/physiology , Animals , Cell Division/genetics , Endothelial Growth Factors/biosynthesis , Endothelial Growth Factors/genetics , Female , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/genetics , Lymphokines/biosynthesis , Lymphokines/genetics , Mice , Mice, Nude , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Rats , Thrombospondin 1/biosynthesis , Thrombospondin 1/genetics , Transfection , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
13.
Oncotarget ; 7(29): 45317-45330, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27246982

ABSTRACT

Women with inherited BRCA1 mutations have an elevated risk (40-80%) for developing breast and ovarian cancers. Reproductive history has been reported to alter this risk, suggesting a relationship between ovarian hormone signaling and BRCA1-related tumor development. BRCA1 interactions with estrogen receptor (ER) and progesterone receptor (PR) signaling were previously described in human breast cancer cell lines and mouse models. However, few studies have examined the effect of ovarian hormone regulation in normal human breast tissues bearing a heterozygous BRCA1 mutation. This study compares the proliferation level (Ki67) and the expression of ER, PR, and of the PR target gene, fatty acid synthase (FASN), in histologically normal breast tissues from women with BRCA1 mutations (BRCA1+/mut, n=23) or without BRCA1 mutations (BRCA1+/+, n=28). BRCA1+/mut tissues showed an increased proliferation and impaired hormone receptor expression with a marked loss of the PR isoform, PR-B. Responses to estradiol and progesterone treatments in BRCA1+/mut and BRCA1+/+ breast tissues were studied in a mouse xenograft model, and showed that PR and FASN expression were deregulated in BRCA1+/mut breast tissues. Progesterone added to estradiol treatment increased the proliferation in a subset of BRCA1+/mut breast tissues. The PR inhibitor, ulipristal acetate (UPA), was able to reverse this aberrant progesterone-induced proliferation. This study suggests that a subset of women with BRCA1 mutations could be candidates for a UPA treatment as a preventive breast cancer strategy.


Subject(s)
Breast Neoplasms/prevention & control , Breast/pathology , Genes, BRCA1 , Mutation , Receptors, Progesterone/physiology , Adult , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Estradiol/pharmacology , Female , Humans , Mice , Middle Aged , Norpregnadienes/pharmacology , Receptors, Estrogen/analysis , Receptors, Progesterone/analysis , Receptors, Progesterone/antagonists & inhibitors , Signal Transduction/physiology , Xenograft Model Antitumor Assays
14.
Cancer Res ; 75(17): 3583-95, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26141863

ABSTRACT

Combining cell-cycle checkpoint kinase inhibitors with the DNA-damaging chemotherapeutic agent gemcitabine offers clinical appeal, with a mechanistic rationale based chiefly on abrogation of gemcitabine-induced G2-M checkpoint activation. However, evidence supporting this mechanistic rationale from chemosensitization studies has not been consistent. Here we report a systematic definition of how pancreatic cancer cells harboring mutant p53 respond to this combination therapy, by combining mathematical models with large-scale quantitative biologic analyses of single cells and cell populations. Notably, we uncovered a dynamic range of mechanistic effects at different ratios of gemcitabine and CHK1 inhibitors. Remarkably, effective synergy was attained even where cells exhibited an apparently functional G2-M surveillance mechanism, as exemplified by a lack of both overt premature CDK1 activation and S-phase mitotic entry. Consistent with these findings, S-G2 duration was extended in treated cells, leading to a definable set of lineage-dependent catastrophic fates. At synergistic drug concentrations, global replication stress was a distinct indicator of chemosensitization as characterized molecularly by an accumulation of S-phase cells with high levels of hyperphosphorylated RPA-loaded single-stranded DNA. In a fraction of these cells, persistent genomic damage was observed, including chromosomal fragmentation with a loss of centromeric regions that prevented proper kinetochore-microtubule attachment. Together, our results suggested a "foot-in-the-door" mechanism for drug synergy where cells were destroyed not by frank G2-M phase abrogation but rather by initiating a cumulative genotoxicity that deregulated DNA synthesis.


Subject(s)
Deoxycytidine/analogs & derivatives , Drug Synergism , Pancreatic Neoplasms/drug therapy , Protein Kinases/drug effects , Antineoplastic Agents/administration & dosage , Cell Division , Cell Line, Tumor , Checkpoint Kinase 1 , DNA Damage/drug effects , DNA Replication/drug effects , Deoxycytidine/administration & dosage , G2 Phase/drug effects , Humans , Mitosis/drug effects , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Tumor Suppressor Protein p53/genetics , Gemcitabine
15.
PLoS One ; 8(6): e67330, 2013.
Article in English | MEDLINE | ID: mdl-23840665

ABSTRACT

Capecitabine (CAP) is a 5-FU pro-drug approved for the treatment of several cancers and it is used in combination with gemcitabine (GEM) in the treatment of patients with pancreatic adenocarcinoma (PDAC). However, limited pre-clinical data of the effects of CAP in PDAC are available to support the use of the GEMCAP combination in clinic. Therefore, we investigated the pharmacokinetics and the efficacy of CAP as a single agent first and then in combination with GEM to assess the utility of the GEMCAP therapy in clinic. Using a model of spontaneous PDAC occurring in Kras(G12D); p53(R172H); Pdx1-Cre (KPC) mice and subcutaneous allografts of a KPC PDAC-derived cell line (K8484), we showed that CAP achieved tumour concentrations (∼25 µM) of 5-FU in both models, as a single agent, and induced survival similar to GEM in KPC mice, suggesting similar efficacy. In vitro studies performed in K8484 cells as well as in human pancreatic cell lines showed an additive effect of the GEMCAP combination however, it increased toxicity in vivo and no benefit of a tolerable GEMCAP combination was identified in the allograft model when compared to GEM alone. Our work provides pre-clinical evidence of 5-FU delivery to tumours and anti-tumour efficacy following oral CAP administration that was similar to effects of GEM. Nevertheless, the GEMCAP combination does not improve the therapeutic index compared to GEM alone. These data suggest that CAP could be considered as an alternative to GEM in future, rationally designed, combination treatment strategies for advanced pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/toxicity , Capecitabine , Carcinoma, Pancreatic Ductal/enzymology , Cell Line, Tumor , Cytidine Deaminase/metabolism , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Disease Models, Animal , Drug Screening Assays, Antitumor , Fluorouracil/administration & dosage , Fluorouracil/analogs & derivatives , Mice , Mice, Transgenic , Neoplasm Transplantation , Pancreatic Neoplasms/enzymology , Prodrugs/administration & dosage , Tissue Distribution , Gemcitabine
16.
J Steroid Biochem Mol Biol ; 115(3-5): 153-60, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19383545

ABSTRACT

Reactive oxygen species (ROS) have been suggested to participate in tumor emergence due to their mitogenic and apoptotic signaling, and as contributors to DNA structural damage. Here we report that progesterone and various synthetic steroids with progestin potencies (norethisterone acetate, MPA, and Tibolone) counteract cell growth induced by hydrogen peroxide (H(2)O(2)), through a potent induction of catalase activities, in breast cancer cells and normal human epithelial breast cells. At physiological concentrations, progesterone and the pure progestin, Org2058, displayed the most potent H(2)O(2) detoxification ability suggesting its effect was characteristic of its progestin potency. We also report on the enhancement of catalase activities by progesterone receptor isoform B (PRB), as determined from experiments using antiprogestins and MDA-MB-231, cells engineered for the selective expression of progesterone receptor isoform A or B. The potent action of progesterone on catalase activities indicates its contribution to a beneficial role in breast cell homeostasis.


Subject(s)
Breast Neoplasms , Catalase/metabolism , Cell Line, Tumor , Progestins/pharmacology , Receptors, Progesterone/metabolism , Breast/cytology , Breast/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Catalase/genetics , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Estrogen Receptor Modulators/metabolism , Estrogen Receptor Modulators/pharmacology , Female , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Norpregnenes/metabolism , Norpregnenes/pharmacology , Oxidants/metabolism , Oxidants/pharmacology , Progesterone/chemistry , Progesterone/metabolism , Progesterone/pharmacology , Progestins/chemistry , Progestins/metabolism , Reactive Oxygen Species/metabolism , Receptors, Progesterone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL