Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nucleic Acids Res ; 43(2): 987-99, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25567988

ABSTRACT

DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks.


Subject(s)
Carrier Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Nuclear Proteins/metabolism , BRCA1 Protein/metabolism , Cell Line , DNA/metabolism , DNA End-Joining Repair , Endodeoxyribonucleases , Humans , Recombinational DNA Repair , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
2.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25855810

ABSTRACT

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , COP9 Signalosome Complex , Cell Line , Cells, Cultured , Cullin Proteins/metabolism , Humans , Mice , Nuclear Proteins/metabolism , Protein Kinases/metabolism
3.
Nat Cell Biol ; 23(10): 1095-1104, 2021 10.
Article in English | MEDLINE | ID: mdl-34616022

ABSTRACT

BRCA2-mutant cells are defective in homologous recombination, making them vulnerable to the inactivation of other pathways for the repair of DNA double-strand breaks (DSBs). This concept can be clinically exploited but is currently limited due to insufficient knowledge about how DSBs are repaired in the absence of BRCA2. We show that DNA polymerase θ (POLθ)-mediated end joining (TMEJ) repairs DSBs arising during the S phase in BRCA2-deficient cells only after the onset of the ensuing mitosis. This process is regulated by RAD52, whose loss causes the premature usage of TMEJ and the formation of chromosomal fusions. Purified RAD52 and BRCA2 proteins both block the DNA polymerase function of POLθ, suggesting a mechanism explaining their synthetic lethal relationships. We propose that the delay of TMEJ until mitosis ensures the conversion of originally one-ended DSBs into two-ended DSBs. Mitotic chromatin condensation might further serve to juxtapose correct break ends and limit chromosomal fusions.


Subject(s)
BRCA2 Protein/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Directed DNA Polymerase/metabolism , Homologous Recombination , Mitosis , Rad52 DNA Repair and Recombination Protein/metabolism , BRCA2 Protein/genetics , Cell Cycle , DNA-Directed DNA Polymerase/genetics , HeLa Cells , Humans , Rad52 DNA Repair and Recombination Protein/genetics , DNA Polymerase theta
4.
Methods Mol Biol ; 1672: 147-154, 2018.
Article in English | MEDLINE | ID: mdl-29043623

ABSTRACT

Homologous recombination is initiated by the so-called DNA end resection, the 5'-3' nucleolytic degradation of a single strand of the DNA at each side of the break. The presence of resected DNA is an obligatory step for homologous recombination. Moreover, the amount of resected DNA modulates the prevalence of different recombination pathways. In different model organisms, there are several published ways to visualize and measure with more or less detail the amount of DNA resected. In human cells, however, technical constraints hampered the study of resection at high resolution. Some information might be gathered from the study of endonuclease-created DSBs, in which the resection of breaks at known sites can be followed by PCR or ChIP. In this chapter, we describe in detail a novel assay to study DNA end resection in breaks located on unknown positions. Here, we use ionizing radiation to induce double-strand breaks, but the same approach can be used to monitor resection induced by different DNA damaging agents. By modifying the DNA-combing technique, used for high-resolution replication analyses, we can measure resection progression at the level of individual DNA fibers. Thus, we named the method Single Molecule Analysis of Resection Tracks (SMART). We use human cells in culture as a model system, but in principle the same approach would be feasible to any model organism adjusting accordingly the DNA isolation part of the protocol.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Single Molecule Imaging/methods , Cell Line , Fluorescent Antibody Technique , Humans
6.
Mol Cell Oncol ; 2(3): e982964, 2015.
Article in English | MEDLINE | ID: mdl-27308460

ABSTRACT

The contribution of BRCA1 (breast cancer 1) to the repair of broken DNA is well established, but its real role at the molecular level is less well understood. By developing a new high-resolution, single-molecule technique, we have now shown that BRCA1 accelerates the processing of DNA breaks that subsequently engage in homologous recombination.

7.
Cell Rep ; 9(2): 451-9, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25310973

ABSTRACT

DNA-end resection is a highly regulated and critical step in the response and repair of DNA double-strand breaks. In higher eukaryotes, CtIP regulates resection by integrating cellular signals via its posttranslational modifications and protein-protein interactions, including cell-cycle-controlled interaction with BRCA1. The role of BRCA1 in DNA-end resection is not clear. Here, we develop an assay to study DNA resection in higher eukaryotes at high resolution. We demonstrate that the BRCA1-CtIP interaction, albeit not essential for resection, modulates the speed at which this process takes place.


Subject(s)
BRCA1 Protein/metabolism , Carrier Proteins/metabolism , DNA Repair , Nuclear Proteins/metabolism , BRCA1 Protein/genetics , Carrier Proteins/genetics , Cell Line, Tumor , Endodeoxyribonucleases , HEK293 Cells , Humans , Kinetics , Nuclear Proteins/genetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL