Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Eur Radiol ; 33(11): 7902-7912, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37142868

ABSTRACT

OBJECTIVES: To develop radiomics signatures from multiparametric magnetic resonance imaging (MRI) scans to detect epidermal growth factor receptor (EGFR) mutations and predict the response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM). METHODS: We included 230 NSCLC patients with BM treated at our hospital between January 2017 and December 2021 and 80 patients treated at another hospital between July 2014 and October 2021 to form the primary and external validation cohorts, respectively. All patients underwent contrast-enhanced T1-weighted (T1C) and T2-weighted (T2W) MRI, and radiomics features were extracted from both the tumor active area (TAA) and peritumoral edema area (POA) for each patient. The least absolute shrinkage and selection operator (LASSO) was used to identify the most predictive features. Radiomics signatures (RSs) were constructed using logistic regression analysis. RESULTS: For predicting the EGFR mutation status, the created RS-EGFR-TAA and RS-EGFR- POA showed similar performance. By combination of TAA and POA, the multi-region combined RS (RS-EGFR-Com) achieved the highest prediction performance, with AUCs of 0.896, 0.856, and 0.889 in the primary training, internal validation, and external validation cohort, respectively. For predicting response to EGFR-TKI, the multi-region combined RS (RS-TKI-Com) generated the highest AUCs in the primary training (AUC = 0.817), internal validation (AUC = 0.788), and external validation (AUC = 0.808) cohort, respectively. CONCLUSIONS: Our findings suggested values of multiregional radiomics of BM for predicting EGFR mutations and response to EGFR-TKI. CLINICAL RELEVANCE STATEMENT: The application of radiomic analysis of multiparametric brain MRI has proven to be a promising tool to stratify which patients can benefit from EGFR-TKI therapy and to facilitate the precise therapeutics of NSCLC patients with brain metastases. KEY POINTS: • Multiregional radiomics can improve efficacy in predicting therapeutic response to EGFR-TKI therapy in NSCLC patients with brain metastasis. • The tumor active area (TAA) and peritumoral edema area (POA) may hold complementary information related to the therapeutic response to EGFR-TKI. • The developed multi-region combined radiomics signature achieved the best predictive performance and may be considered as a potential tool for predicting response to EGFR-TKI.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , ErbB Receptors/genetics , Edema , Retrospective Studies , Magnetic Resonance Imaging
2.
Entropy (Basel) ; 21(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-33267526

ABSTRACT

Obstructive sleep apnea (OSA) syndrome is a common sleep disorder. As an alternative to polysomnography (PSG) for OSA screening, the current automatic OSA detection methods mainly concentrate on feature extraction and classifier selection based on physiological signals. It has been reported that OSA is, along with autonomic nervous system (ANS) dysfunction and heart rate variability (HRV), a useful tool for ANS assessment. Therefore, in this paper, eight novel indices of short-time HRV are extracted for OSA detection, which are based on the proposed multi-bands time-frequency spectrum entropy (MTFSE) method. In the MTFSE, firstly, the power spectrum of HRV is estimated by the Burg-AR model, and the time-frequency spectrum image (TFSI) is obtained. Secondly, according to the physiological significance of HRV, the TFSI is divided into multiple sub-bands according to frequency. Last but not least, by studying the Shannon entropy of different sub-bands and the relationships among them, the eight indices are obtained. In order to validate the performance of MTFSE-based indices, the Physionet Apnea-ECG database and K-nearest neighbor (KNN), support vector machine (SVM), and decision tree (DT) classification methods are used. The SVM classification method gets the highest classification accuracy, its average accuracy is 91.89%, the average sensitivity is 88.01%, and the average specificity is 93.98%. Undeniably, the MTFSE-based indices provide a novel idea for the screening of OSA disease.

3.
Micromachines (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675358

ABSTRACT

Laser-processing technology has been widely used in the ultra-precision machining of diamond materials. It has the advantages of high precision and high efficiency, especially in the field of super-hard materials and high-precision parts manufacturing. This paper explains the fundamental principles of diamond laser processing, introduces the interaction mechanisms between various types of lasers and diamond materials, focuses on analyzing the current development status of various modes of laser processing of diamond, briefly discusses the relevant applications in diamond cutting, micro-hole forming, and micro-groove machining, etc., and finally discusses the issues, challenges, and potential future advancements of laser technology in the field of diamond processing at this point.

4.
Front Oncol ; 13: 1154327, 2023.
Article in English | MEDLINE | ID: mdl-37143947

ABSTRACT

Purpose: To investigate the use of multiparameter MRI-based radiomics in the in-depth prediction of epidermal growth factor receptor (EGFR) mutation and subtypes based on the spinal metastasis in patients with primary lung adenocarcinoma. Methods: A primary cohort was conducted with 257 patients who pathologically confirmed spinal bone metastasis from the first center between Feb. 2016 and Oct. 2020. An external cohort was developed with 42 patients from the second center between Apr. 2017 and Jun. 2021. All patients underwent sagittal T1-weighted imaging (T1W) and sagittal fat-suppressed T2-weight imaging (T2FS) MRI imaging. Radiomics features were extracted and selected to build radiomics signatures (RSs). Machine learning classify with 5-fold cross-validation were used to establish radiomics models for predicting the EGFR mutation and subtypes. Clinical characteristics were analyzed with Mann-Whitney U and Chi-Square tests to identify the most important factors. Nomogram models were developed integrating the RSs and important clinical factors. Results: The RSs derived from T1W showed better performance for predicting the EGFR mutation and subtypes compared with those from T2FS in terms of AUC, accuracy and specificity. The nomogram models integrating RSs from combination of the two MRI sequences and important clinical factors achieved the best prediction capabilities in the training (AUCs, EGFR vs. Exon 19 vs. Exon 21, 0.829 vs. 0.885 vs.0.919), internal validation (AUCs, EGFR vs. Exon 19 vs. Exon 21, 0.760 vs. 0.777 vs.0.811), external validation (AUCs, EGFR vs. Exon 19 vs. Exon 21, 0.780 vs. 0.846 vs.0.818). DCA curves indicated potential clinical values of the radiomics models. Conclusions: This study indicated potentials of multi-parametric MRI-based radiomics to assess the EGFR mutation and subtypes. The proposed clinical-radiomics nomogram models can be considered as non-invasive tools to assist clinicians in making individual treatment plans.

5.
Acad Radiol ; 29(3): e9-e17, 2022 03.
Article in English | MEDLINE | ID: mdl-34332860

ABSTRACT

RATIONALE AND OBJECTIVES: Preoperative identifications of epidermal growth factor receptor (EGFR) mutation subtypes based on the MRI image of spinal metastases are needed to provide individualized therapy, but has not been previously investigated. This study aims to develop and evaluate an MRI-based radiomics nomogram for differentiating the exon 19 and 21 in EGFR mutation from spinal bone metastases in patients with primary lung adenocarcinoma. MATERIALS AND METHODS: A total of 76 patients underwent T1-weighted and T2-weighted fat-suppressed MRI scans were enrolled in this study, 38 were positive for EGFR mutation in exon 19 and 38 were in exon 21.MRI imaging features were extracted and selected from each MRI pulse sequence, and used to form the radiomics signature. A radiomics nomogram was developed integrating the radiomics signature and important clinical factors with receiver operating characteristic, calibration and decision curve analysis to assess the nomogram. Clinical characteristics were analyzed with Mann-Whitney U and Chi-Square tests to identify the most important factors. RESULTS: A total of 6 features were selected as the most discriminative predictors from the two MRI pulse sequences. The nomogram integrating the combined radiomics signature, age and CEA level generated good prediction performance in the training (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.90 vs. 0.87 vs. 0.59) and validation (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.88 vs. 0.86 vs. 0.72) cohort. DCA analysis confirmed the potential clinical utility of the nomogram. CONCLUSION: This study demonstrated that MRI features from spinal bone metastases can be used to prognosticate EGFR mutation subtypes in exon 19 and 21. The developed pre-treatment nomogram can potentially guide treatments for lung adenocarcinoma patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Spinal Neoplasms , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/genetics , Biomarkers , ErbB Receptors/genetics , Exons , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Magnetic Resonance Imaging/methods , Mutation/genetics , Nomograms , Retrospective Studies , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/genetics
6.
Technol Health Care ; 29(4): 655-665, 2021.
Article in English | MEDLINE | ID: mdl-33427700

ABSTRACT

BACKGROUND: Tubular structure segmentation in chest CT images can reduce false positives (FPs) dramatically and improve the performance of nodules malignancy levels classification. OBJECTIVE: In this study, we present a framework that can segment the pulmonary tubular structure regions robustly and efficiently. METHODS: Firstly, we formulate a global tubular structure identification model based on Frangi filter. The model can recognize irregular vascular structures including bifurcation, small vessel, and junction, robustly and sensitively in 2D images. In addition, to segment the vessels from JVN, we design a local tubular structure identification model with a sliding window. Finally, we propose a multi-view voxel discriminating scheme on the basis of the previous two models. This scheme reduces the computational complexity of obtaining high entropy spatial tubular structure information. RESULTS: Experimental results have shown that the proposed framework achieves TPR of 85.79%, FPR of 24.83%, and ACC of 84.47% with the average elapsed time of 162.9 seconds. CONCLUSIONS: The framework provides an automated approach for effectively segmenting tubular structure from the chest CT images.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted , Thorax
7.
Front Oncol ; 11: 725922, 2021.
Article in English | MEDLINE | ID: mdl-34568055

ABSTRACT

OBJECTIVES: This study aims to evaluate digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW) MRI, individually and combined, for the values in the diagnosis of breast cancer, and propose a visualized clinical-radiomics nomogram for potential clinical uses. METHODS: A total of 120 patients were enrolled between September 2017 and July 2018, all underwent preoperative DM, DBT, DCE, and DWI scans. Radiomics features were extracted and selected using the least absolute shrinkage and selection operator (LASSO) regression. A radiomics nomogram was constructed integrating the radiomics signature and important clinical predictors, and assessed with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). RESULTS: The radiomics signature derived from DBT plus DM generated a lower area under the ROC curve (AUC) and sensitivity, but a higher specificity compared with that from DCE plus DWI. The nomogram integrating the combined radiomics signature, age, and menstruation status achieved the best diagnostic performance in the training (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.975 vs. 0.964 vs. 0.782) and validation (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.983 vs. 0.978 vs. 0.680) cohorts. DCA confirmed the potential clinical usefulness of the nomogram. CONCLUSIONS: The DBT plus DM provided a lower AUC and sensitivity, but a higher specificity than DCE plus DWI for detecting breast cancer. The proposed clinical-radiomics nomogram has diagnostic advantages over each modality, and can be considered as an efficient tool for breast cancer screening.

8.
Abdom Radiol (NY) ; 46(11): 5072-5085, 2021 11.
Article in English | MEDLINE | ID: mdl-34302510

ABSTRACT

PURPOSE: To investigate the value of multiparametric MRI-based radiomics on predicting response to nCRT in patients with rectal cancer. METHODS: This study enrolled 193 patients with pathologically confirmed LARC who received nCRT treatment between Apr. 2014 and Jun. 2018. All patients underwent baseline T1-weighted (T1W), T2-weighted (T2W) and T2-weighted fat-suppression (T2FS) MRI scans before neoadjuvant chemoradiotherapy. Radiomics features were extracted and selected from the MRI data to establish the radiomics signature. Important clinical predictors were identified by Mann-Whitney U test and Chi-square test. The nomogram integrating the radiomics signature and important clinical predictors was constructed using multivariate logistic regression. Prediction capabilities of each model were assessed with receiver operating characteristic (ROC) curve analysis. Performance of the nomogram was evaluated by its calibration and potential clinical usefulness. RESULTS: For the prediction of good response (GR) and pathologic complete response (pCR), the developed radiomics signature comprising 10 and 7 features, respectively, were significantly associated with the therapeutic response to nCRT. The nomogram incorporating the radiomics signature and important clinical predictors (CEA and CA19-9 for predicting GR; CEA, posttreatment length and posttreatment thickness for predicting pCR) achieved favorable prediction efficacy, with AUCs of 0.918 (95% confidence interval [CI]: 0.867-0.971, Sen = 0.972, Spe = 0.828) and 0.944 (95% CI: 0.891-0.997, Sen = 0.943, Spe = 0.828) in the training and validation cohort for predicting GR, respectively; with AUCs of 0.959 (95% CI: 0.927-0.991, Sen = 1.000, Spe = 0.833) and 0.912 (95% CI: 0.843-0.982, Sen = 1.000, Spe = 0.815) in the training and validation cohort for predicting pCR, respectively. Decision curve analysis confirmed potential clinical usefulness of our nomogram. CONCLUSIONS: This study demonstrated that the MRI-based radiomics nomogram is predictive of response to nCRT and can be considered as a promising tool for facilitating treatment decision-making for patients with LARC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Rectal Neoplasms , Humans , Magnetic Resonance Imaging , Neoadjuvant Therapy , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Retrospective Studies
9.
Article in English | MEDLINE | ID: mdl-32765631

ABSTRACT

In the process of treating pro-diseases with acupuncture, traditional Chinese medicine (TCM) doctors may fine-tune acupuncture prescriptions according to different prior experiences. Different prescriptions will affect the efficiency and effect of acupuncture treatment, and even excessive acupoint selection may cause psychological pressure on patients. We still lack an effective means to analyze the meridian system and acupoint specificity to clarify the mapping relationship between acupoints and diseases. Given the inability of modern medical technology to provide effective evidence support for meridians and acupoints, we combined acupuncture theory with network science for an interdisciplinary discussion. In this paper, we constructed a weighted undirected acupoint-disease network (ADN) based on clinical acupuncture prescription literature and proposed a high-specificity key node mining method based on ADN. Combined with the principle of acupoint selection in TCM, the proposed method balanced the contribution of local areas to the network based on the distribution characteristics of meridians and selected 30 key acupoints with high influence on the global topology according to the evaluation index of key nodes. Finally, we compared the proposed method with the other six classical node importance evaluation algorithms in terms of resolution, network loss, and accuracy. The comprehensive results show that the marked key acupoint nodes make outstanding contributions to the connectivity, topological structure, and weighted benefits of the network, and the stability and specificity of the algorithm guarantee the reliability of the key acupoint nodes. We consider that these key acupoints with high centrality in ADN can be used as core acupoints to help researchers explore targeted and high-impact acupoint combinations under resource constraints and optimize existing acupuncture prescriptions.

10.
World J Clin Cases ; 8(21): 5203-5212, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33269256

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (TB) and lung cancer (LC) are common diseases with a high incidence and similar symptoms, which may be misdiagnosed by radiologists, thus delaying the best treatment opportunity for patients. AIM: To develop and validate radiomics methods for distinguishing pulmonary TB from LC based on computed tomography (CT) images. METHODS: We enrolled 478 patients (January 2012 to October 2018), who underwent preoperative CT screening. Radiomics features were extracted and selected from the CT data to establish a logistic regression model. A radiomics nomogram model was constructed, with the receiver operating characteristic, decision and calibration curves plotted to evaluate the discriminative performance. RESULTS: Radiomics features extracted from lesions with 4 mm radial dilation distances outside the lesion showed the best discriminative performance. The radiomics nomogram model exhibited good discrimination, with an area under the curve of 0.914 (sensitivity = 0.890, specificity = 0.796) in the training cohort, and 0.900 (sensitivity = 0.788, specificity = 0.907) in the validation cohort. The decision curve analysis revealed that the constructed nomogram had clinical usefulness. CONCLUSION: These proposed radiomic methods can be used as a noninvasive tool for differentiation of TB and LC based on preoperative CT data.

SELECTION OF CITATIONS
SEARCH DETAIL