Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Glob Chang Biol ; 21(10): 3786-99, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26033188

ABSTRACT

Global warming will jeopardize the persistence and genetic diversity of many species. Assisted colonization, or the movement of species beyond their current range boundary, is a conservation strategy proposed for species with limited dispersal abilities or adaptive potential. However, species that rely on photoperiodic and thermal cues for development may experience conflicting signals if transported across latitudes. Relocating multiple, distinct populations may remedy this quandary by expanding genetic variation and promoting evolutionary responses in the receiving habitat--a strategy known as assisted gene flow. To better inform these policies, we planted seeds from latitudinally distinct populations of the annual legume, Chamaecrista fasciculata, in a potential future colonization site north of its current range boundary. Plants were exposed to ambient or elevated temperatures via infrared heating. We monitored several life history traits and estimated patterns of natural selection to determine the adaptive value of plastic responses. To assess the feasibility of assisted gene flow between phenologically distinct populations, we counted flowers each day and estimated the degree of temporal isolation between populations. Increased temperatures advanced each successive phenological trait more than the last, resulting in a compressed life cycle for all but the southern-most population. Warming altered patterns of selection on flowering onset and vegetative biomass. Population performance was dependent on latitude of origin, with the northern-most population performing best under ambient conditions and the southern-most performing most poorly, even under elevated temperatures. Among-population differences in flowering phenology limited the potential for genetic exchange among the northern- and southern-most populations. All plastic responses to warming were neutral or adaptive; however, photoperiodic constraints will likely necessitate evolutionary responses for long-term persistence, especially when involving populations from disparate latitudes. With strategic planning, our results suggest that assisted colonization and assisted gene flow may be feasible options for preservation.


Subject(s)
Chamaecrista/physiology , Gene Flow , Global Warming , Selection, Genetic , Chamaecrista/genetics , Chamaecrista/growth & development , Ontario , Phenotype , Plant Dispersal , United States
SELECTION OF CITATIONS
SEARCH DETAIL