Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38324473

ABSTRACT

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Subject(s)
Cerebral Cortex , RNA Splicing , RNA-Binding Proteins , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Exons/genetics , Gene Expression Regulation, Developmental , Mice, Knockout , Neurogenesis/genetics , Neurons/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Mol Psychiatry ; 29(5): 1265-1280, 2024 May.
Article in English | MEDLINE | ID: mdl-38228889

ABSTRACT

Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Dopaminergic Neurons , Hippocampus , Interneurons , Mice, Transgenic , Ventral Tegmental Area , Animals , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiopathology , Hippocampus/metabolism , Hippocampus/physiopathology , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/pathology , Dopaminergic Neurons/metabolism , Interneurons/metabolism , Interneurons/physiology , Parvalbumins/metabolism , Dopamine/metabolism , Receptors, Dopamine D2/metabolism , Male , Pyramidal Cells/metabolism , Levodopa/pharmacology , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Nerve Degeneration/metabolism , Quinpirole/pharmacology , Gamma Rhythm/physiology , Mice, Inbred C57BL
3.
Anal Chem ; 96(8): 3362-3372, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38348659

ABSTRACT

Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.


Subject(s)
Boron Compounds , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemistry , Adjuvants, Immunologic/pharmacology , Membrane Glycoproteins , Receptors, Immunologic
5.
J Pathol ; 251(2): 113-116, 2020 06.
Article in English | MEDLINE | ID: mdl-32207855

ABSTRACT

The CISD2 gene encodes the CDGSH iron-sulfur domain-containing protein 2. Cisd2 is involved in mammalian lifespan control, the unfolded protein response, Ca2+ buffering, and autophagy regulation. It has been demonstrated previously that Cisd2 deficiency causes an accelerated ageing phenotype characterised by the accumulation of damaged mitochondria, while Cisd2 overexpression leads to mitochondrial protection against typical age-associated alterations. Accumulating data suggest that neuronal amyloid-beta (Aß) deposition, Ca2+ dysregulation, impairment of autophagic flux, and accumulation of damaged organelles including mitochondria play an important role in Alzheimer's disease (AD) pathogenesis. In a recent issue of The Journal of Pathology, Yi-Fan Chen and collaborators put together all these experimental observations and demonstrated that Cisd2 overexpression attenuates AD pathogenesis by guaranteeing mitochondrial quality and synaptic functions. The authors report convincing evidence to highlight the role of Cisd2 in Aß-mediated mitochondrial damage and, interestingly, this neuroprotection could be dependent on other molecular mechanisms beyond the canonical and previously described roles of Cisd2. Collectively, these data open up new avenues in neuroprotection and highlight Cisd2 as a promising new target in AD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Alzheimer Disease , Membrane Proteins , Animals , Membrane Proteins/drug effects , Membrane Proteins/genetics , Mitochondria , Nerve Tissue Proteins , Neurons , United Kingdom
6.
Neurobiol Dis ; 139: 104787, 2020 06.
Article in English | MEDLINE | ID: mdl-32032729

ABSTRACT

TG2576 mice show highest levels of the full length mutant Swedish Human Amyloid Precursor Protein (APPKM670/671LN) during prodromal and early sympotomatic stages. Interestingly, this occurs in association with the unbalanced expression of two of its RNA Binding proteins (RBPs) opposite regulators, the Fragile-X Mental Retardation Protein (FMRP) and the heteronuclear Ribonucleoprotein C (hnRNP C). Whether an augmentation in overall translational efficiency also contributes to the elevation of APP levels at those early developmental stages is currently unknown. We investigated this possibility by performing a longitudinal polyribosome profiling analysis of APP mRNA and protein in total hippocampal extracts from Tg2576 mice. Results showed that protein polysomal signals were exclusively detected in pre-symptomatic (1 months) and early symptomatic (3 months) mutant mice. Differently, hAPP mRNA polysomal signals were detected at any age, but a peak of expression was found when mice were 3-month old. Consistent with an early but transient rise of translational efficiency, the phosphorylated form of the initial translation factor eIF2α (p-eIF2α) was reduced at pre-symptomatic and early symptomatic stages, whereas it was increased at the fully symptomatic stage. Pharmacological downregulation of overall translation in early symptomatic mutants was then found to reduce hippocampal levels of full length APP, Aßspecies, BACE1 and Caspase-3, to rescue predominant LTD at hippocampal synapses, to revert dendritic spine loss and memory alterations, and to reinstate memory-induced c-fosactivation. Altogether, our findings demonstrate that overall translation is upregulated in prodromal and early symptomatic Tg2576 mice, and that restoring proper translational control at the onset of AD-like symptoms blocks the emergence of the AD-like phenotype.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Prodromal Symptoms , Up-Regulation , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-2/metabolism , Female , Fragile X Mental Retardation Protein , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Phosphorylation , RNA, Messenger/metabolism , Synapses/metabolism
7.
Int J Mol Sci ; 21(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143275

ABSTRACT

As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.


Subject(s)
Cholinergic Neurons/cytology , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Gliosis/prevention & control , Neuroprotective Agents/pharmacology , Prosencephalon/cytology , Acetylcholine/metabolism , Animals , Behavior, Animal , Choline O-Acetyltransferase/metabolism , Cholinergic Neurons/pathology , Cognition Disorders/prevention & control , Densitometry , Feeding Behavior , Female , Hippocampus/cytology , Male , Maze Learning , Mice , Mice, Inbred C57BL , Neuroprotection , Olive Oil/administration & dosage , Quality of Life , Saporins , Social Behavior
10.
Neurobiol Dis ; 116: 142-154, 2018 08.
Article in English | MEDLINE | ID: mdl-29778899

ABSTRACT

The functional loop involving the ventral tegmental area (VTA), dorsal hippocampus and nucleus accumbens (NAc) plays a pivotal role in the formation of spatial memory and persistent memory traces. In particular, the dopaminergic innervation from the VTA to the hippocampus is critical for hippocampal-related memory function and alterations in the midbrain dopaminergic system are frequently reported in Alzheimer's disease (AD), contributing to age-related decline in memory and non-cognitive functions. However, much less is known about the hippocampus-NAc connectivity in AD. Here, we evaluated the functioning of the hippocampus-to-NAc core connectivity in the Tg2576 mouse model of AD that shows a selective and progressive degeneration of VTA dopaminergic neurons. We show that reduced dopaminergic innervation in the Tg2576 hippocampus results in reduced synaptic plasticity and excitability of dorsal subiculum pyramidal neurons. Importantly, the glutamatergic transmission from the hippocampus to the NAc core is also impaired. Chemogenetic depolarisation of Tg2576 subicular pyramidal neurons with an excitatory Designer Receptor Exclusively Activated by Designer Drugs, or systemic administration of the DA precursor levodopa, can both rescue the deficits in Tg2576 mice. Our data suggest that the dopaminergic signalling in the hippocampus is essential for the proper functioning of the hippocampus-NAc excitatory synaptic transmission.


Subject(s)
Alzheimer Disease/metabolism , Dopamine/metabolism , Hippocampus/metabolism , Nucleus Accumbens/metabolism , Synaptic Transmission/physiology , Alzheimer Disease/genetics , Animals , Dopamine/genetics , Dopaminergic Neurons/metabolism , Excitatory Postsynaptic Potentials/physiology , Male , Mice , Mice, Transgenic , Organ Culture Techniques
11.
Pharmacol Res ; 130: 414-419, 2018 04.
Article in English | MEDLINE | ID: mdl-29391234

ABSTRACT

Mammalian brain cortical functions, from executive and motor functioning to memory and emotional regulation, are strictly regulated by subcortical projections. These projections terminate in cortical areas that are continuously influenced by released neurotransmitters and neuromodulators. Among the subcortical structures, the dopaminergic midbrain plays a pivotal role in tuning cortical functions that commonly result altered in many neurological and psychiatric disorders. Incidentally, extensive neuropathological observations support a strong link between structural alterations of the dopaminergic midbrain and significant behavioural symptomatology observed in patients suffering from Alzheimer 's disease(AD). Here, we will review recent progress on the involvement of the dopaminergic system in the pathophysiology of AD as well as the current therapeutic strategies targeting this system.


Subject(s)
Alzheimer Disease/metabolism , Dopamine/metabolism , Mesencephalon/metabolism , Alzheimer Disease/drug therapy , Animals , Humans
12.
Pharmacol Res ; 130: 12-24, 2018 04.
Article in English | MEDLINE | ID: mdl-29427771

ABSTRACT

The neurotrophic factors neuregulins (NRGs) and their receptors, ErbB tyrosine kinases, regulate neurotransmission, synaptic plasticity and cognitive functions and their alterations have been associated to different neuropsychiatric disorders. Group 1 metabotropic glutamate receptors (mGluRI)-dependent mechanisms are also altered in animal models of neuropsychiatric diseases, especially mGluRI-induced glutamatergic long-term depression (mGluRI-LTD), a form of synaptic plasticity critically involved in learning and memory. Despite this evidence, a potential link between NRGs/ErbB signalling and mGluRI-LTD has never been considered. Here, we aimed to test the hypothesis that NRGs/ErbB signalling regulates mGluRI functions in the hippocampus, thus controlling CA1 pyramidal neurons excitability and synaptic plasticity as well as mGluRI-dependent behaviors. We investigated the functional interaction between NRG1/ErbB signalling and mGluRI in hippocampal CA1 pyramidal neurons, by analyzing the effect of a pharmacological modulation of NRG1/ErbB signalling on the excitation of pyramidal neurons and on the LTD at CA3-CA1 synapses induced by an mGluRI agonist. Furthermore, we verified the involvement of ErbB signalling in mGluRI-dependent learning processes, by evaluating the consequence of an intrahippocampal in vivo injection of a pan-ErbB inhibitor in the object recognition test in mice, a learning task dependent on hippocampal mGluRI. We found that NRG1 potentiates mGluRI-dependent functions on pyramidal neurons excitability and synaptic plasticity at CA3-CA1 synapses. Further, endogenous ErbB signalling per se regulates, through mGluRI, neuronal excitability and LTD in CA1 pyramidal neurons, since ErbB inhibition reduces mGluRI-induced neuronal excitation and mGluRI-LTD. In vivo intrahippocampal injection of the ErbB inhibitor, PD158780, impairs mGluRI-LTD at CA3-CA1 synapses and affects the exploratory behavior in the object recognition test. Thus, our results identify a key role for NRG1/ErbB signalling in the regulation of hippocampal mGluRI-dependent synaptic and cognitive functions, whose alteration might contribute to the pathogenesis of different brain diseases.


Subject(s)
ErbB Receptors/physiology , Hippocampus/physiology , Neuregulin-1/physiology , Pyramidal Cells/physiology , Receptors, Metabotropic Glutamate/physiology , Animals , Long-Term Synaptic Depression , Male , Mice, Inbred C57BL , Neuronal Plasticity , Recognition, Psychology
13.
Eur J Neurosci ; 45(1): 92-105, 2017 01.
Article in English | MEDLINE | ID: mdl-27519559

ABSTRACT

We studied the properties of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) in mice expressing the enhanced green fluorescent protein (eGFP) under the control of the tyrosine hydroxylase promoter (TH-GFP). By using a practical map of cell positioning in distinct SNpc and VTA subregions in horizontal midbrain slices we saw that the spontaneous firing, membrane properties, cell body size and magnitude of the hyperpolarization-activated current (Ih ) in TH-GFP-positive neurons (TH-GFP+ ) vary significantly among subregions, following a mediolateral gradient. Block of Ih with Zd7288 inhibited firing in the most lateral subregions, but had little effect in the intermediate/medial VTA. In addition, TH-GFP+ cells were excited by Met5 -Enkephalin. Extracellular recordings from a large neuron number showed that all TH-GFP+ cells were inhibited by dopamine, suggesting that this is a reliable approach for identifying dopaminergic neurons in vitro. Simultaneous recordings from dopamine-sensitive and dopamine-insensitive neurons showed that dopamine-insensitive cells (putative non-dopaminergic neurons) are unaffected by Zd7288 but inhibited by Met5 -Enkephalin. Under patch-clamp, dopamine generated a quantitatively similar outward current in most TH-GFP+ neurons, although medial VTA cells showed reduced dopamine sensitivity. Pargyline prolonged the dopamine current, whereas cocaine enhanced dopamine-mediated responses in both the SNpc and the VTA. Our work provides new insights into the variability in mouse midbrain dopaminergic neurons along the medial-lateral axis and points to the necessity of a combination of different electrophysiological and pharmacological approaches for reliably identifying these cells to distinguish them from non-dopaminergic neurons in the midbrain.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Substantia Nigra/metabolism , Ventral Tegmental Area/metabolism , Animals , Cells, Cultured , Female , Male , Membrane Potentials/physiology , Mesencephalon/metabolism , Mice , Tyrosine 3-Monooxygenase/metabolism
14.
Transl Neurodegener ; 13(1): 33, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926897

ABSTRACT

The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.


Subject(s)
Alzheimer Disease , Disease Progression , Transcranial Direct Current Stimulation , Alzheimer Disease/therapy , Humans , Transcranial Direct Current Stimulation/methods , Gamma Rhythm/physiology , Animals
15.
Hippocampus ; 23(6): 488-99, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23504989

ABSTRACT

The transcription factor cAMP response element binding protein (CREB) is a key protein implicated in memory, synaptic plasticity and structural plasticity in mammals. Whether CREB regulates the synaptic incorporation of hippocampal glutamatergic receptors under basal and learning-induced conditions remains, however, mostly unknown. Using double-transgenic mice conditionally expressing a dominant negative form of CREB (CREBS133A, mCREB), we analyzed how chronic loss of CREB function in adult hippocampal glutamatergic neurons impacts the levels of the AMPA and NMDA receptors subunits within the post-synaptic densities (PSD). In basal (naïve) conditions, we report that inhibition of CREB function was associated with a specific reduction of the AMPAR subunit GluA1 and a proportional increase in its Ser845 phosphorylated form within the PSD. These molecular alterations correlated with a reduction in AMPA receptors mEPSC frequency, with a decrease in long-term potentiation (LTP), and with an increase in long-term depression (LTD). The basal levels other major synaptic proteins (GluA2/3, GluN1, GluN2A, and PSD95) within the PSD were not affected by CREB inhibition. Blocking CREB function also impaired contextual fear conditioning (CFC) and selectively blocked the CFC-driven enhancement of GluA1 and its Ser845 phosphorylated form within the PSD, molecular changes normally observed in wild-type mice. CFC-driven enhancement of other synaptic proteins (GluA2/3, GluN1, GluN2A, and PSD95) within the PSD was not significantly perturbed by the loss of CREB function. These findings provide the first evidence that, in vivo, CREB is necessary for the specific maintenance of the GluA1 subunit within the PSD of hippocampal neurons in basal conditions and for its trafficking within the PSD during the occurrence of learning.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Learning/physiology , Protein Subunits/metabolism , Receptors, AMPA/metabolism , Synapses/metabolism , Animals , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, AMPA/antagonists & inhibitors
17.
J Alzheimers Dis ; 94(4): 1377-1380, 2023.
Article in English | MEDLINE | ID: mdl-37522213

ABSTRACT

In the last years, many clinical studies highlighted sex-specific differences in the pathophysiology of Alzheimer's disease (AD). The recent paper published in the Journal of Alzheimer's Disease shows the influence of sex on amyloid-ß plaque deposition, behavior, and dopaminergic signaling in the 5xFAD mouse model of AD, with worse alterations in female mice. This commentary focuses on the importance of recognizing sex as a key variable to consider for a more precise clinical practice, with the challenge to develop sex-specific therapeutic interventions in neurodegenerative diseases such as AD.


Subject(s)
Alzheimer Disease , Male , Mice , Female , Animals , Alzheimer Disease/drug therapy , Mice, Transgenic , Amyloid beta-Peptides/therapeutic use , Disease Models, Animal
18.
Ageing Res Rev ; 87: 101907, 2023 06.
Article in English | MEDLINE | ID: mdl-36893920

ABSTRACT

In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1ß and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.


Subject(s)
Inflammasomes , Neurodegenerative Diseases , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Dopamine/metabolism , Neurodegenerative Diseases/metabolism , Neuroinflammatory Diseases , Microglia/metabolism
19.
Transl Psychiatry ; 13(1): 63, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36804922

ABSTRACT

Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.


Subject(s)
Autistic Disorder , CA1 Region, Hippocampal , Female , Mice , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Receptors, Estrogen/metabolism , Hippocampus/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Interneurons/metabolism , Phenotype , Adaptor Proteins, Signal Transducing/metabolism
20.
Front Psychiatry ; 13: 1039725, 2022.
Article in English | MEDLINE | ID: mdl-36325523

ABSTRACT

Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer's Disease (AD). Most frequently they appear since the mild cognitive impairment (MCI) stage preceding clinical AD, and have a prognostic importance. Unfortunately, these symptoms also worsen the daily functioning of patients, increase caregiver stress and accelerate the disease progression from MCI to AD. Apathy and depression are the most common of these NPS, and much attention has been given in recent years to understand the biological mechanisms related to their appearance in AD. Although for many decades these symptoms have been known to be related to abnormalities of the dopaminergic ventral tegmental area (VTA), a direct association between deficits in the VTA and NPS in AD has never been investigated. Fortunately, this scenario is changing since recent studies using preclinical models of AD, and clinical studies in MCI and AD patients demonstrated a number of functional, structural and metabolic alterations affecting the VTA dopaminergic neurons and their mesocorticolimbic targets. These findings appear early, since the MCI stage, and seem to correlate with the appearance of NPS. Here, we provide an overview of the recent evidence directly linking the dopaminergic VTA with NPS in AD and propose a setting in which the precocious identification of dopaminergic deficits can be a helpful biomarker for early diagnosis. In this scenario, treatments of patients with dopaminergic drugs might slow down the disease progression and delay the impairment of daily living activities.

SELECTION OF CITATIONS
SEARCH DETAIL