Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 594: 8-14, 2022 02 26.
Article in English | MEDLINE | ID: mdl-35066379

ABSTRACT

Lignin is a highly complex phenolic polymer which is essential for plants, but also makes it difficult for industrial processing. Engineering lignin by introducing relatively labile linkages into the lignin backbone can render it more amenable to chemical depolymerization. It has been reported that introducing a feruloyl-coenzyme A monolignol transferase from Angelica sinensis (AsFMT) into poplar could incorporate monolignol ferulate conjugates (ML-FAs) into lignin polymers, suggesting a promising way to manipulate plants for readily deconstructing. FMT catalyzes a reaction between monolignols and feruloyl-CoA to produce ML-FAs and free CoA-SH. However, the mechanisms of substrate specificity and catalytic process of FMT remains poorly understood. Here we report the structure of AsFMT, which adopts a typical fold of BAHD acyltransferase family. Structural comparisons with other BAHD homologs reveal several unique structural features of AsFMT, different from those of the BAHD homologs. Further molecular docking studies showed that T375 in AsFMT may function as an oxyanion hole to stabilize the reaction intermediate and also proposed a role of H278 in the binding of the nucleophilic hydroxyl group of monolignols. Together, this study provides important structural insights into the reactions catalyzed by AsFMT and will shed light on its future application in lignin engineering.


Subject(s)
Acyl Coenzyme A/chemistry , Aldehyde Oxidoreductases/chemistry , Angelica/enzymology , Oxidoreductases/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Lignin/chemistry , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Domains , Substrate Specificity , Transferases/metabolism , Ultracentrifugation
2.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1057-1064, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33135677

ABSTRACT

Neuraminidase (NA) inhibitors are one of the two major classes of antivirals available for the treatment and prevention of influenza. X-ray crystal structure determination of NA head domains and their complexes with various inhibitors are of importance for the design and optimization of anti-influenza drugs. However, the globular tetrameric properties of NA head domains may produce crystals with pathological imperfections, lattice-translocation defects, making structure determination no longer straightforward. In this report, using a crystal of the NA head domain from the Wuhan Asiatic toad influenza virus as an example, the identification and solution of this type of crystal pathology are presented. Furthermore, its underlying mechanism of formation is explored.


Subject(s)
Anura/virology , Neuraminidase/chemistry , Orthomyxoviridae Infections/virology , Orthomyxoviridae/enzymology , Viral Proteins/chemistry , Animals , Catalytic Domain , Models, Molecular
3.
Cell Discov ; 4: 35, 2018.
Article in English | MEDLINE | ID: mdl-30038796

ABSTRACT

Various bacteria can ferment vitamin C (l-ascorbate) under anaerobic conditions via the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The PTSasc system is composed of two soluble energy-coupling proteins (EI and HPr) and an enzyme II complex (EIIA, EIIB, and EIIC) for the anaerobic uptake of ascorbate and its phosphorylation to l-ascorbate 6-phosphate in vivo. Crystal structures of the ascorbate-bound EIIC component from Escherichia coli are available in outward-open and occluded conformations, suggesting a possible elevator mechanism of membrane transport. Despite these advances, it remains unclear how EIIC actually transports the substrate across the membrane and interacts with EIIB, which transfers its phosphate group to the EIIC-embedding ascorbate. Here, we present the crystal structure of the EIICasc component from Pasteurella multocida in the inward-facing conformation. By comparing three conformational states, we confirmed the original proposed model: the ascorbate translocation can be achieved by a rigid-body movement of the substrate-binding core domain relative to the V motif domain, which brings along the transmembrane helices TM2 and TM7 of the V motif domain to undergo a winding at the pivotal positions. Together with an in vivo transport assay, we completed the picture of the transport cycle of the ascorbate superfamily of membrane-spanning EIIC components of the PTS system.

SELECTION OF CITATIONS
SEARCH DETAIL