Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Pest Manag Sci ; 77(4): 1705-1713, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33200872

ABSTRACT

BACKGROUND: The association of crops of value with companion plants could be one of the strategies to reduce the harmful effects of pests. We hypothesize that volatile organic compounds (VOCs) emitted by some aromatic plants may negatively impact M. persicae, disturbing its feeding behavior and consequently its reproduction. RESULTS: VOCs emitted from six potential companion plant species affected the reproduction of M. persicae feeding on pepper plants, Capsicum annuum. Reproduction of M. persicae was reduced when exposed to VOCs from leaves of Ocimum basilicum and flowers of Tagetes patula. Thus, species and phenology of the companion plant can influence the effect. The VOCs from O. basilicum and T. patula also reduced phloem feeding by the aphids based on electropenetrography (EPG). CONCLUSION: The reduced fecundity of M. persicae could be linked to aphid feeding disruption provoked by the VOCs emitted by O. basilicum in the vegetative stage or T. patula cv. Nana in the flowering stage. © 2020 Society of Chemical Industry.


Subject(s)
Aphids , Capsicum , Prunus persica , Animals , Feeding Behavior , Fertility
2.
Pest Manag Sci ; 75(6): 1571-1584, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30461184

ABSTRACT

BACKGROUND: Intercropping companion plants (CPs) with horticultural crops could be an eco-friendly strategy to optimize pest management. In this research, volatile organic compounds (VOCs) emitted by some CPs were investigated for their repellent properties towards the green peach aphid (Myzus persicae Sulzer). The aim of this study was to understand the modes of action involved: direct effects on the aphid and/or indirect effects via the host plant (pepper, Capsicum annuum L.). RESULTS: We identified two promising repellent CP species: the volatile blend from basil (Ocimum basilicum, direct repellent effect) and the mixture of (or previously intercropped) C. annuum plants with Tagetes patula cv. Nana (indirect effect). This effect was cultivar-dependent and linked to the volatile bouquet. For the 16 compounds present in the O. basilicum or T. patula bouquets tested individually, (E)-ß-farnesene, and eugenol reported good repellent properties against M. persicae. Other compounds were repellent at medium and/or highest concentrations. Thus, the presence of repellent VOCs in a mixture does not mean that it has a repellent propriety. CONCLUSION: We identified two promising repellent CP species towards M. persicae, with a likely effect of one CP's VOCs on the host plant repellency and highlighted the specific effectiveness of VOC blends. © 2018 Society of Chemical Industry.


Subject(s)
Aphids/drug effects , Capsicum/metabolism , Volatile Organic Compounds/pharmacology , Animals , Aphids/physiology , Biological Assay , Smell/drug effects , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL