Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Vet Pharmacol Ther ; 45(2): 203-212, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34897751

ABSTRACT

Fluoroquinolones are often administered to pet rabbits given their perceived safety and limited effects on anaerobic gut microbiota. However, the pharmacokinetics and relative safety of pradofloxacin, a third-generation veterinary fluoroquinolone with a much broader spectrum of activity, have not been reported in this species. Here, we determined the pharmacokinetic profile of a single dose of oral pradofloxacin in rabbits and evaluated effects on the faecal microbiome. Four mature female rabbits were administered pradofloxacin (25 mg/ml oral suspension), at a dose of 7.5 mg/kg. The pradofloxacin median (range) Tmax was 4.50 (2.00-5.00) h, Cmax 600.66 (395.85-886.72) ng/ml and t½ was 1.27 (0.12-1.39) h. These results indicated that oral absorption of pradofloxacin was slower, and elimination faster compared with other fluoroquinolones in healthy rabbits, as well as relative to cats and dogs. Following treatment with pradofloxacin, faecal microbiota profiling showed some compositional differences between treated and control animals. This was the result of a significant decrease in the abundance of Proteobacteria, in particular bacteria belonging to the Pseudomonas, Atopostipes and Parabacteroides genera. The pharmacokinetic profile of pradofloxacin in rabbits should be further studied by increasing the sample size and using multiple-dose protocols (i.e. 7 days) to confirm safety. Further information on the effects of protein binding, higher dosages and disease on pradofloxacin pharmacokinetics in rabbits are needed before an accurate dosing regimen can be recommended.


Subject(s)
Anti-Bacterial Agents , Microbiota , Administration, Oral , Animals , Cats , Dogs , Female , Fluoroquinolones , Rabbits , Suspensions
2.
Sci Rep ; 11(1): 17775, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493783

ABSTRACT

Macropod progressive periodontal disease (MPPD) is a necrotizing, polymicrobial, inflammatory disease commonly diagnosed in captive macropods. MPPD is characterized by gingivitis associated with dental plaque formation, which progresses to periodontitis and then to osteomyelitis of the mandible or maxilla. However, the underlying microbial causes of this disease remain poorly understood. In this study, we collected 27 oral plaque samples and associated clinical records from 22 captive Macropodidae and Potoroidae individuals that were undergoing clinical examination at Adelaide and Monarto Zoos in South Australia (15 healthy, 7 gingivitis and 5 periodontitis-osteomyelitis samples). The V3-V4 region of the 16S ribosomal RNA gene was sequenced using an Illumina Miseq to explore links between MPPD and oral bacteria in these animals. Compositional differences were detected between the microbiota of periodontitis-osteomyelitis cases compared to healthy samples (p-value with Bonferroni correction < 0.01), as well as gingivitis cases compared to healthy samples (p-value with Bonferroni correction < 0.05) using Permutational Multivariate Analysis of Variance (PERMANOVA). An overabundance of Porphyromonas, Fusobacterium, and Bacteroides taxa was also identified in animals with MPPD compared to healthy individuals using linear discriminant analysis effect size (LEfSe; p = < 0.05). An increased abundance of Desulfomicrobium also was detected in MPPD samples (LEfSe; p < 0.05), which could potentially reflect differences in disease progression. This is the first microbiota analysis of MPPD in captive macropods, and these results support a polymicrobial pathogenesis of MPPD, suggesting that the microbial interactions underpinning MPPD may be more complex than previously documented.


Subject(s)
Bacteroides/isolation & purification , Dental Plaque/veterinary , Fusobacterium/isolation & purification , Gingivitis/veterinary , Macropodidae/microbiology , Microbiota , Periodontitis/veterinary , Porphyromonas/isolation & purification , Potoroidae/microbiology , Animals , Animals, Zoo/microbiology , Biodiversity , Coinfection , Dental Plaque/microbiology , Disease Progression , Gingivitis/microbiology , Mandibular Diseases/microbiology , Mandibular Diseases/veterinary , Maxillary Diseases/microbiology , Maxillary Diseases/veterinary , Osteomyelitis/microbiology , Osteomyelitis/veterinary , Periodontitis/microbiology , South Australia
SELECTION OF CITATIONS
SEARCH DETAIL