Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 827
Filter
Add more filters

Publication year range
1.
Cell ; 183(1): 46-61.e21, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32941802

ABSTRACT

Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.


Subject(s)
Carrier Proteins/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Carrier Proteins/genetics , Cell Differentiation , HEK293 Cells , Homeostasis , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Mitochondria , Muscle Development/physiology , Myoblasts/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Nature ; 603(7902): 604-609, 2022 03.
Article in English | MEDLINE | ID: mdl-35322252

ABSTRACT

Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. Here we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach reduces the number of averages to reach a given Allan deviation by a factor of 1.59 ± 0.06 compared with traditional methods not using entanglement-enabled protocols. We further perform on-device quantum-classical feedback optimization to 'self-calibrate' the programmable quantum sensor with comparable performance. This ability illustrates that this next generation of quantum sensor can be used without previous knowledge of the device or its noise environment.

3.
Nature ; 609(7928): 747-753, 2022 09.
Article in English | MEDLINE | ID: mdl-36002568

ABSTRACT

Animals and fungi have radically distinct morphologies, yet both evolved within the same eukaryotic supergroup: Opisthokonta1,2. Here we reconstructed the trajectory of genetic changes that accompanied the origin of Metazoa and Fungi since the divergence of Opisthokonta with a dataset that includes four novel genomes from crucial positions in the Opisthokonta phylogeny. We show that animals arose only after the accumulation of genes functionally important for their multicellularity, a tendency that began in the pre-metazoan ancestors and later accelerated in the metazoan root. By contrast, the pre-fungal ancestors experienced net losses of most functional categories, including those gained in the path to Metazoa. On a broad-scale functional level, fungal genomes contain a higher proportion of metabolic genes and diverged less from the last common ancestor of Opisthokonta than did the gene repertoires of Metazoa. Metazoa and Fungi also show differences regarding gene gain mechanisms. Gene fusions are more prevalent in Metazoa, whereas a larger fraction of gene gains were detected as horizontal gene transfers in Fungi and protists, in agreement with the long-standing idea that transfers would be less relevant in Metazoa due to germline isolation3-5. Together, our results indicate that animals and fungi evolved under two contrasting trajectories of genetic change that predated the origin of both groups. The gradual establishment of two clearly differentiated genomic contexts thus set the stage for the emergence of Metazoa and Fungi.


Subject(s)
Evolution, Molecular , Fungi , Genome , Genomics , Phylogeny , Animals , Fungi/genetics , Gene Transfer, Horizontal , Genes , Genome/genetics , Genome, Fungal/genetics , Metabolism/genetics
4.
Nature ; 612(7941): 714-719, 2022 12.
Article in English | MEDLINE | ID: mdl-36477531

ABSTRACT

Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.


Subject(s)
Eukaryota , Food Chain , Microbiology , Phylogeny , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/ultrastructure , Biodiversity , Ecology , Eukaryota/classification , Eukaryota/genetics , Eukaryota/ultrastructure , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Predatory Behavior , Species Specificity
5.
Nature ; 572(7768): 240-243, 2019 08.
Article in English | MEDLINE | ID: mdl-31316212

ABSTRACT

Rhodophyta (red algae) is one of three lineages of Archaeplastida1, a supergroup that is united by the primary endosymbiotic origin of plastids in eukaryotes2,3. Red algae are a diverse and species-rich group, members of which are typically photoautotrophic, but are united by a number of highly derived characteristics: they have relatively small intron-poor genomes, reduced metabolism and lack cytoskeletal structures that are associated with motility, flagella and centrioles. This suggests that marked gene loss occurred around their origin4; however, this is difficult to reconstruct because they differ so much from the other archaeplastid lineages, and the relationships between these lineages are unclear. Here we describe the novel eukaryotic phylum Rhodelphidia and, using phylogenomics, demonstrate that it is a closely related sister to red algae. However, the characteristics of the two Rhodelphis species described here are nearly opposite to those that define red algae: they are non-photosynthetic, flagellate predators with gene-rich genomes, along with a relic genome-lacking primary plastid that probably participates in haem synthesis. Overall, these findings alter our views of the origins of Rhodophyta, and Archaeplastida evolution as a whole, as they indicate that mixotrophic feeding-that is, a combination of predation and phototrophy-persisted well into the evolution of the group.


Subject(s)
Phylogeny , Rhodophyta/classification , Rhodophyta/metabolism , Cell Shape , Cell Survival , Genome , Photosynthesis , Rhodophyta/cytology , Rhodophyta/genetics
6.
Curr Issues Mol Biol ; 46(6): 5614-5631, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921007

ABSTRACT

The study of salivary amino acid profiles has attracted the attention of researchers, since amino acids are actively involved in most metabolic processes, including breast cancer. In this study, we analyzed the amino acid profile of saliva in a sample including all molecular biological subtypes of breast cancer to obtain a more complete picture and evaluate the potential utility of individual amino acids or their combinations for diagnostic purposes. This study included 116 patients with breast cancer, 24 patients with benign breast disease, and 25 healthy controls. From all patients, strictly before the start of treatment, saliva samples were collected, and the quantitative content of 26 amino acids was determined. Statistically significant differences between the three groups are shown in the content of Asp, Gly, Leu + Ile, Orn, Phe, Pro, Thr, and Tyr. To differentiate the three groups from each other, a decision tree was built. To construct it, we selected those amino acids for which the change in concentrations in the subgroups was multidirectional (GABA, Hyl, Arg, His, Pro, and Car). For the first time, it is shown that the amino acid profile of saliva depends on the molecular biological subtype of breast cancer. The most significant differences are shown for the luminal B HER2-positive and TNBC subgroups. In our opinion, it is critically important to consider the molecular biological subtype of breast cancer when searching for potential diagnostic markers.

7.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657442

ABSTRACT

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Subject(s)
A Kinase Anchor Proteins , Cytoskeletal Proteins , KCNQ1 Potassium Channel , Long QT Syndrome , Animals , Female , Humans , Male , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/chemistry , CHO Cells , Cricetulus , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/chemistry , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Models, Molecular , Mutation , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Protein Binding
8.
Mol Phylogenet Evol ; 190: 107964, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951557

ABSTRACT

Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.


Subject(s)
Stramenopiles , Phylogeny , RNA, Ribosomal
9.
Nat Chem Biol ; 18(5): 451-460, 2022 05.
Article in English | MEDLINE | ID: mdl-35484256

ABSTRACT

Over the past few years, we have seen an explosion of novel genetically encoded tools for measuring and manipulating metabolism in live cells and animals. Here, we will review the genetically encoded tools that are available, describe how these tools can be used and outline areas where future development is needed in this fast-paced field. We will focus on tools for direct measurement and manipulation of metabolites. Metabolites are master regulators of metabolism and physiology through their action on metabolic enzymes, signaling enzymes, ion channels and transcription factors, among others. We hope that this Perspective will encourage more people to use these novel reagents or even join this exciting new field to develop novel tools for measuring and manipulating metabolism.


Subject(s)
Ion Channels , Signal Transduction , Animals , Humans
10.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38916053

ABSTRACT

Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.


Subject(s)
Action Potentials , Ambystoma mexicanum , Metamorphosis, Biological , Myocytes, Cardiac , Animals , Ambystoma mexicanum/physiology , Ambystoma mexicanum/growth & development , Myocytes, Cardiac/physiology , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Heart/growth & development , Heart/physiology , Myocardium/metabolism
11.
J Eukaryot Microbiol ; 71(2): e12995, 2024.
Article in English | MEDLINE | ID: mdl-37548159

ABSTRACT

Rhodelphidia is a recently discovered phylum within the supergroup Archaeplastida, comprising only two known representatives (Rhodelphis marinus and Rhodelphis limneticus). Despite its close phylogenetic relatedness to red algae, Rhodelphidia differ markedly by being nonphotosynthetic eukaryotrophic flagellates with gene- and intron-rich genomes. Here, we describe a new freshwater Rhodelphidia species, Rhodelphis mylnikovi sp. n., strain Rhod-M. It shows clear morphological differences with the two other Rhodelphis species, including larger cell body size, presence of two contractile vacuoles, short and blunt pseudopodia, absence of cysts, and tendency to cannibalism. 18S rRNA-based phylogenetic analysis placed it sister to the freshwater species R. limneticus.


Subject(s)
Fresh Water , Genome , Phylogeny , RNA, Ribosomal, 18S/genetics
12.
Phys Chem Chem Phys ; 26(17): 13412-13419, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647047

ABSTRACT

Anodic aluminum oxide (AAO) membranes were used as templates to control orientation of an ion-channel forming columnar mesophase obtained by self assembly of a wedge-shaped sulfonate molecule. Inside the AAO structure, the director vector of the mesophase is oriented parallel to the pore axis due to the confinement effect. The molecular arrangement induced by the spatial confinement within the pores is extended over several microns into the remnant film on the AAO surface. The homeotropic alignment of the channels promotes unidimensional ion conduction through the film plane, which is manifested by a considerable increase in conductivity relative to isotropic samples.

13.
Phys Chem Chem Phys ; 26(3): 1770-1776, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38168970

ABSTRACT

Using a reactive molecular beam with high kinetic energy (Ekin), it is possible to speed gas-surface reactions involving high activation barriers (Eact), which would require elevated pressures (P0) if a random gas with a Maxwell-Boltzmann distribution is used. By simply computing the number of molecules that overcome the activation barrier in a random gas at P0 and in a molecular beam at Ekin = Eact, we establish an Ekin-P0 equivalence curve, through which we postulate that molecular beams are ideal tools to investigate gas-surface reactions that involve high activation energies. In particular, we foresee the use of molecular beams to simulate gas surface reactions within the industrial-range (>10 bar) using surface-sensitive ultra-high vacuum (UHV) techniques, such as X-ray photoemission spectroscopy (XPS). To test this idea, we revisit the oxidation of the Cu(111) surface combining O2 molecular beams and XPS experiments. By tuning the kinetic energy of the O2 beam in the range of 0.24-1 eV, we achieve the same sequence of surface oxides obtained in ambient pressure photoemission (AP-XPS) experiments, in which the Cu(111) surface was exposed to a random O2 gas up to 1 mbar. We observe the same surface oxidation kinetics as in the random gas, but with a much lower dose, close to the expected value derived from the equivalence curve.

14.
BMC Cardiovasc Disord ; 24(1): 460, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198735

ABSTRACT

BACKGROUND AND OBJECTIVES: The hypothesis of the study was the assumption that the serum levels of soluble ST2 (sST2) and growth differentiation factor (GDF-15) can be predictors of atrial fibrillation (AF) recurrence in long-term period after primary radiofrequency catheter ablation (RFA). METHODS: Of the 165 patients included in the prospective follow-up, the final analysis included 131 patients whose follow-up duration reached 18 months after the end of the blanking period (3 months after RFA). The median age of patients was 59.0 (50.0; 64.0) years, and 80 (61%) were men. Paroxysmal AF was present in 103 (79%) and persistent AF in 28 (21%) patients. All patients underwent transthoracic and transesophageal echocardiography, and electroanatomic mapping was used to assess the area of low-voltage zones (LVZ). sST2 and GDF-15 levels were determined by ELISA using GDF-15/MIC-1 analytical kits (BioVender, Czech Republic) and Presage ST2 (Critical Diagnostics, USA) before RFA. After RFA, patients had regular follow-up visits at 3-6-9-12-18 months with 12-lead ECG or Holter ECG monitoring and with clinical evaluation. The primary endpoint was the occurrence of the first symptomatic AF recurrence (AFr) lasting > 30 s, recorded on an ECG or during daily ECG monitoring, after a blanking period. RESULTS: At the 18-month follow-up, 47 patients (35.9%) had AFr. The groups with and without AFr didn`t differ in the LVZ area. The medians of NT-proBNP, GDF-15 and sST2 also didn`t differ significantly between the groups, but in patients with AFr, the proportion of those with sST2 ≥ 36 ng/ml (the border of the lower and middle terziles) was higher (p = 0.03). According to the one-factor Cox regression analysis, AFr were associated with four factors: AF history ≥ 1 year, early AFr (during the blanking period), left atrial appendage flow velocity (LAAFV) < 54 cm/sec and sST2 ≥ 36 ng/ml. In the multivariate Cox analysis two independent predictors of AFr were obtained: sST2 ≥ 36 ng/ml (HR = 3.8; 95% CI 1.5-9.8, p = 0.006) and LAAFV < 54 сm/sec (HR = 1.96; 95% CI 1.01-3.82, p = 0.048). CONCLUSIONS: Serum sST2 level with a cut-off value of 36 ng/ml or more can be used as a predictor of AF recurrence in the long-term period after primary RFA.


Subject(s)
Atrial Fibrillation , Biomarkers , Catheter Ablation , Growth Differentiation Factor 15 , Interleukin-1 Receptor-Like 1 Protein , Predictive Value of Tests , Recurrence , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/blood , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/surgery , Male , Interleukin-1 Receptor-Like 1 Protein/blood , Female , Middle Aged , Catheter Ablation/adverse effects , Biomarkers/blood , Prospective Studies , Risk Factors , Time Factors , Growth Differentiation Factor 15/blood , Treatment Outcome , Risk Assessment , Aged , Electrocardiography, Ambulatory
15.
Article in English | MEDLINE | ID: mdl-38914851

ABSTRACT

A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.

16.
Biochemistry (Mosc) ; 89(8): 1392-1401, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39245452

ABSTRACT

Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5'-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.


Subject(s)
Channelrhodopsins , Chlorophyta , Chlorophyta/genetics , Chlorophyta/metabolism , Animals , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , CHO Cells , Cricetulus , Optogenetics/methods , Light
17.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34140336

ABSTRACT

Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.


Subject(s)
Cells/metabolism , Energy Metabolism , Physical Phenomena
18.
J Fish Dis ; 47(5): e13929, 2024 May.
Article in English | MEDLINE | ID: mdl-38291575

ABSTRACT

Teratoma is a rare tumour in fish consisting of tissues from more than one germ layer, that may be located in either the gonads or extragonadal sites. Teratomas in many fish species remain poorly understood. In this work, we performed the first histological examinations of extragonadal teratomas in Poecilia wingei and also examined the influence of a large teratoma on male sexual activity. The studied teratomas shared general organizational features, but they also had variations in both external and internal features. In teratomas, the most common and highly differentiated tissues were striated muscle and nervous tissue. Despite the tumour, the male P. wingei exhibited normal mating behaviour and retained the ability for successful copulation. The structural features of extragonadal teratomas in guppy fish indicate a possible connection between these tumours and a failure of conserved processes operating in the embryonic germline.


Subject(s)
Fish Diseases , Poecilia , Teratoma , Male , Animals , Poecilia/physiology , Teratoma/veterinary , Teratoma/pathology , Reproduction , Gonads/pathology
19.
Parasitol Res ; 123(1): 83, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38182821

ABSTRACT

Nine species-level taxa of bat ectoparasites, three chigger mites (Trombiculidae), three hard (Ixodidae), and one soft tick (Argasidae) species, as well as two bug (Cimicidae) species from nine bat species hosts were detected in the Eastern Palaearctic. Trombiculid larvae of Leptotrombidium schlugerae, Leptotrombidium album, and Ascoschoengastia latyshevi were first recorded on bats in the temperate zone of eastern Russia. L. schlugerae was more abundant than A. latyshevi in the same study sites in Eastern Siberia, and the main hosts of both chigger species were Plecotus ognevi and Eptesicus nilssonii. Ixodid ticks Dermacentor marginatus, Ixodes simplex, and Ixodes sp. were sampled from bats in Kazakhstan, the Far East, and Eastern Siberia, respectively. Phylogenetic analysis based on Cox1, 16S rDNA, and ITS2 sequences of I. simplex showed that the specimens from the Far East grouped into a clade distributed in the Eastern Palaearctic and India. In turn, the specimen of Ixodes sp. from Eastern Siberia was most closely related to Ixodes soricis and Ixodes angustus with p-distance of 9.8-10.7% (Cox1), suggesting that this tick probably belongs to a new species. Argas vespertilionis larvae were collected from three widespread bat species in Kazakhstan. Two bug species, Cimex pipistrelli and Cimex aff. lectularius, were recorded in the Far East and Eastern Siberia, respectively. Specimens from Transbaikalia were morphologically identified as Cimex lectularius. However, they differed from the latter by 12.5-12.9% of Cox1 sequences, indicating that C. aff. lectularius may be a new species.


Subject(s)
Argasidae , Bedbugs , Chiroptera , Ixodes , Ixodidae , Trombiculidae , Animals , Phylogeny , Larva
20.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000007

ABSTRACT

Using quantum chemical calculation data obtained by the DFT method with the B3PW91/TZVP and M062X/def2TZVP theory levels, the possibility of the existence of four Be(II) coordination compounds, each of which contains in the inner coordination sphere and the double deprotonated forms of subporphyrazine (H2SP), mono[benzo]subporphyrazine (H2MBSP), di[benzo]subporphyrazine (H2DBSP), and tri[benzo]subporphyrazine (subphthalocyanine) (H2TBSP) with a ratio Be(II) ion/ligand = 1:1, were examined Selected geometric parameters of the molecular structures of these (666)macrotricyclic complexes with closed contours are given; it was noted that BeN3 chelate nodes have a trigonal-pyramidal structure and exhibit a very significant (almost 30°) deviation from coplanarity; however, all three 6-membered metal-chelate and three 5-membered non-chelate rings in each of these compounds are practically planar and deviate from coplanarity by no more than 2.5°. The bond angles between two nitrogen atoms and a Be atom are equal to 60° (in the [BeSP] and [BeTBSP]) or less by no more than 0.5° (in the [BeMBSP] and [BeDBSP]). The presence of annulated benzo groups has little effect on the parameters of the molecular structures of these complexes. Good agreement between the structural data obtained using the above two versions of the DFT method was noticed. NBO analysis data for these complexes are presented; it was noted that, according to both DFT methods used, the ground state of the each of complexes under study is a spin singlet. Standard thermodynamic parameters of formation (standard enthalpy ΔfH0, entropy S0, and Gibbs free energy ΔfG0) for the above-mentioned macrocyclic compounds were calculated.


Subject(s)
Coordination Complexes , Density Functional Theory , Coordination Complexes/chemistry , Models, Molecular , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL