Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Anal Biochem ; 380(2): 323-30, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18577368

ABSTRACT

A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.


Subject(s)
Dopamine/analysis , Electrochemistry/methods , Microdialysis/methods , Animals , Calcium/pharmacology , Calibration , Cell Count , Cell Survival , Dopamine/metabolism , Electrochemistry/instrumentation , Microdialysis/instrumentation , PC12 Cells , Potassium Chloride/pharmacology , Rats , Reproducibility of Results , Secretory Rate/drug effects , Software
2.
Neuroscience ; 138(3): 869-78, 2006.
Article in English | MEDLINE | ID: mdl-16337092

ABSTRACT

Post-menopausal estrogen deficiency is recognized to play a pivotal role in the pathogenesis of a number of age-related diseases in women, such as osteoporosis, coronary heart disease and Alzheimer's disease. There are also sexual differences in the progression of diseases associated with the nigrostriatal dopaminergic system, such as Parkinson's disease, a chronic progressive degenerative disorder characterized by the selective degeneration of mesencephalic dopaminergic neurons in the substancia nigra pars compacta. The mechanism(s) responsible for dopaminergic neuron degeneration in Parkinson's disease are still unknown, but oxidative stress and neuroinflammation are believed to play a key role in nigrostriatal dopaminergic neuron demise. Estrogen neuroprotective effects have been widely reported in a number of neuronal cell systems including the nigrostriatal dopaminergic neurons, via both genomic and non-genomic effects, however, little is known on estrogen modulation of astrocyte and microglia function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. We here highlight estrogen modulation of glial neuroinflammatory reaction in the protection of mesencephalic dopaminergic neurons and emphasize the cardinal role of glia-neuron crosstalk in directing neuroprotection vs neurodegeneration. In particular, the specific role of astroglia and its pro-/anti-inflammatory mechanisms in estrogen neuroprotection are presented. This study shows that astrocyte and microglia response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injury vary according to the estrogenic status with direct consequences for dopaminergic neuron survival, recovery and repair. These findings provide a new insight into the protective action of estrogen that may possibly contribute to the development of novel therapeutic treatment strategies for Parkinson's disease.


Subject(s)
Estrogens/physiology , Nerve Degeneration/physiopathology , Neuroglia/physiology , Parkinson Disease/physiopathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Disease Models, Animal , Humans , Inflammation/physiopathology , Models, Neurological , Nerve Degeneration/prevention & control , Nervous System/physiopathology , Neurons/pathology , Neurons/physiology , Oxidative Stress
3.
Neuropharmacology ; 33(2): 193-8, 1994 Feb.
Article in English | MEDLINE | ID: mdl-8035903

ABSTRACT

The present study was undertaken to determine whether nitric oxide (NO) alters voltage-dependent changes in intracellular calcium levels ([Ca2+]i) using PC12 cells as a neuronal model. The addition to PC12 cells of sodium nitroprusside (SNP), which spontaneously releases NO in aqueous solution, significantly inhibited the KCl-stimulated increase in [Ca2+]i. The inhibitory action of SNP was concentration-dependent and was mimicked by hydroxylamine which also generates NO. Both L-type (nifedipine sensitive) and N-type (omega-conotoxin sensitive) voltage-dependent Ca2+ channels are present in PC12 cells and may be affected by NO-generating agents. In contrast, SNP did not alter [Ca2+]i in response to purinergic receptor stimulation. Preincubation of PC12 cells with 8-bromo-cyclic GMP also inhibited the KCl-stimulated increase in [Ca2+]i. In addition, inclusion of the guanylyl cyclase inhibitor, LY83583, blocked the inhibitory action of SNP on the voltage-sensitive changes in [Ca2+]i. The results suggest that NO selectively inhibits voltage-dependent calcium influx in neuronal cells through a cyclic GMP-dependent mechanism.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Cyclic GMP/physiology , Neurons/metabolism , Nitric Oxide/physiology , Analysis of Variance , Animals , Neurons/physiology , PC12 Cells
4.
Neuropharmacology ; 34(3): 289-95, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7630483

ABSTRACT

A deficiency of striatal dopamine (DA) is generally accepted as an expression of manganese (Mn) toxicity in experimental animals. Since compromised cellular defence mechanisms may be involved in Mn neurotoxicity, we investigated the response of the neuronal antioxidant system [ascorbic acid (AA) oxidation, glutathione (GSH) and uric acid levels] and neurochemical changes in the striatum in aged rats exposed to Mn. Levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), AA, dehydroascorbic acid (DHAA), GSH and uric acid were determined after subchronic oral exposure to MnCl2 200 mg/kg (3-month-old rats) and 30-100-200 mg/kg (20-month-old-rats). Aged rats had basal levels of striatal DA, DOPAC, HVA, 5-HT, 5-HIAA, GSH and AA lower than those of young rats. In the striatum of aged rats, Mn induced biphasic changes in the levels of DA, DOPAC, HVA (an increase at the lower dose and a decrease at the higher dose) and DHAA (opposite changes). Mn decreased GSH levels and increased uric acid levels both in the striatum and in synaptosomes in all groups of aged rats. All of these parameters were affected to a lesser extent in young rats. In conclusion, the response of cellular defence mechanisms in aged rats is consistent with a Mn-induced increase in the formation of reactive oxygen species. An age-related impairment of the neuronal antioxidant system may play an enabling role in Mn neurotoxicity.


Subject(s)
Aging/physiology , Manganese Poisoning , Neostriatum/metabolism , Oxidative Stress/drug effects , Animals , Ascorbic Acid/metabolism , Dopamine/metabolism , Glutathione/metabolism , Male , Neostriatum/cytology , Neostriatum/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Serotonin/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism , Uric Acid/metabolism
5.
Br J Pharmacol ; 130(4): 937-45, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10864903

ABSTRACT

We have previously shown that manganese enhances L-dihydroxyphenylanine (L-DOPA) toxicity to PC12 cells in vitro. The supposed mechanism of manganese enhancing effect [an increase in L-DOPA and dopamine (DA) auto-oxidation] was studied using microdialysis in the striatum of freely moving rats. Systemic L-DOPA [25 mg kg(-1) intraperitoneally (i.p.) twice in a 12 h interval] significantly increased baseline dialysate concentrations of L-DOPA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and uric acid, compared to controls. Conversely, DA and ascorbic acid concentrations were significantly decreased. A L-DOPA oxidation product, presumptively identified as L-DOPA semiquinone, was detected in the dialysate. The L-DOPA semiquinone was detected also following intrastriatal infusion of L-DOPA. In rats given L-DOPA i.p. , intrastriatal infusion of N-acetylcysteine (NAC) significantly increased DA and L-DOPA dialysate concentrations and lowered those of L-DOPA semiquinone; in addition, NAC decreased DOPAC+HVA and uric acid dialysate concentrations. In rats given L-DOPA either systemically or intrastriatally, intrastriatal infusion of manganese decreased L-DOPA dialysate concentrations and greatly increased those of L-DOPA semiquinone. These changes were inhibited by NAC infusion. These findings demonstrate that auto-oxidation of exogenous L-DOPA occurs in vivo in the rat striatum. The consequent reactive oxygen species generation may account for the decrease in dialysate DA and ascorbic acid concentrations and increase in enzymatic oxidation of xanthine and DA. L-DOPA auto-oxidation is inhibited by NAC and enhanced by manganese. These results may be of relevance to the L-DOPA long-term therapy of Parkinson's disease.


Subject(s)
Corpus Striatum/drug effects , Levodopa/metabolism , Manganese/pharmacology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Acetylcysteine/pharmacology , Animals , Ascorbic Acid/metabolism , Chlorides/pharmacology , Chromatography, High Pressure Liquid , Corpus Striatum/metabolism , Dialysis Solutions/chemistry , Dopamine/metabolism , Homovanillic Acid/metabolism , Infusion Pumps , Levodopa/pharmacology , Levodopa/therapeutic use , Male , Manganese Compounds/pharmacology , Microdialysis , Movement , Oxidation-Reduction/drug effects , Parkinson Disease/drug therapy , Rats , Rats, Wistar , Time Factors , Uric Acid/metabolism
6.
Br J Pharmacol ; 134(2): 275-82, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11564645

ABSTRACT

1. We showed previously that interaction between NO and iron (II), both released following the decomposition of sodium nitroprusside (SNP), accounted for the late SNP-induced dopamine (DA) increase in dialysates from the striatum of freely moving rats; in addition, we showed that co-infusion of iron (II) with the NO-donor S-nitroso-N-acetylpenicillamine mimicked SNP effects on striatal DA release. 2. In the present study, intrastriatal co-infusion of iron (II) (given as FeSO(4), 1 mM for 40 min) with the NO-donor and potential peroxynitrite generator 3-morpholinosydnonimine (SIN-1) (0.2, 0.5, 1.0 or 5.0 mM for 180 min), potentiated the SIN-1-induced increase in DA concentration in dialysates from the striatum of freely moving rats. Neither alone nor associated with iron (II) did SIN-1 induce changes in dialysate ascorbic acid or uric acid concentrations. 3. Neither co-infusion of a superoxide dismutase mimetic nor uric acid affected SIN-1-induced increases in dialysate DA concentration. 4. Infusion of the iron chelator deferoxamine (0.2 mM for 180 min) decreased dialysate DA and attenuated SIN-1-induced increases in dialysate DA concentrations. 5. These results suggest that iron plays a key role in SIN-1-induced release of striatal DA and do not support any role for either peroxynitrite or superoxide anion in SIN-1-induced release of striatal DA.


Subject(s)
Corpus Striatum/drug effects , Dopamine/metabolism , Iron/pharmacology , Molsidomine/analogs & derivatives , Molsidomine/pharmacology , Nitric Oxide Donors/pharmacology , Nitric Oxide/physiology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Acetylcysteine/pharmacology , Animals , Ascorbic Acid/metabolism , Corpus Striatum/metabolism , Deferoxamine/pharmacology , Dialysis Solutions/chemistry , Dose-Response Relationship, Drug , Free Radical Scavengers/pharmacology , Homovanillic Acid/metabolism , Male , Metalloporphyrins/pharmacology , Movement , Rats , Rats, Wistar , Uric Acid/metabolism , Uric Acid/pharmacology
7.
Br J Pharmacol ; 132(4): 941-9, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11181436

ABSTRACT

1. We showed previously that interaction between NO and iron(II), both released following decomposition of sodium nitroprusside (SNP), accounted for the late SNP-induced dopamine (DA) increase in dialysates from the striatum of freely moving rats. 2. In this study, intrastriatal infusion of the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (0.2 mM for 180 min) induced a moderate increase in dialysate DA and decreases in ascorbic acid dialysate concentrations; in contrast, SNAP 1 mM infusion induced a long-lasting decrease in both DA and ascorbic acid dialysate concentrations. 3-Methoxy-tyramine (3-MT), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and uric acid levels were unaffected. 3. Co-infusion of ferrous sulphate [iron(II), 1 mM for 40 min] with SNAP either 1 or 0.2 mM (for 180 min), produced a significant increase in both DA and 3-MT dialysate concentrations, but it did not affect decreases in dialysate ascorbic acid levels. All other dialysate neurochemicals were unaffected. 4. Co-infusion of ascorbic acid (0.1 mM) with SNAP (1 mM) for 180 min did not modify SNAP-induced decreases in dialysate DA levels. In contrast, co-infusion of uric acid (1 mM) reversed SNAP-induced decreases in dialysate DA; co-infusion of a superoxide dismutase mimetic delayed SNAP-induced DA decreases for a short period, while co-infusion of the antioxidant N-acetylcysteine (NAC, 0.1 mM) significantly increased dialysate DA. 5. The results of this study show that SNAP induces concentration-related changes in DA dialysate levels. At higher concentrations, SNAP induces non-enzymatic DA oxidation, which is inhibited by uric acid and NAC; ascorbic acid failed to protect dialysate DA from oxidation, probably owing to its promoting effect on SNAP decomposition; exogenous iron(II) may react with NO generated from SNAP decomposition, with a consequent increase in dialysate DA and 3-MT, therefore mimicking SNP effects on striatal DA release.


Subject(s)
Ascorbic Acid/physiology , Corpus Striatum/drug effects , Dopamine/metabolism , Nitric Oxide Donors/pharmacology , Oxidative Stress , Penicillamine/pharmacology , Acetylcysteine/pharmacology , Animals , Corpus Striatum/metabolism , Iron/metabolism , Male , Microdialysis , Penicillamine/analogs & derivatives , Rats , Rats, Wistar , S-Nitroso-N-Acetylpenicillamine
8.
Br J Pharmacol ; 129(3): 582-8, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10711358

ABSTRACT

1. The effects of systemic, intrastriatal or intranigral administration of d-amphetamine on glutamate, aspartate, ascorbic acid (AA), uric acid, dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in dialysates from the striatum of freely-moving rats were evaluated using microdialysis. 2. d-Amphetamine (2 mg kg-1) given subcutaneously (s.c.) increased DA, AA and uric acid and decreased DOPAC + HVA, glutamate and aspartate dialysate concentrations over a 3 h period after d-amphetamine. 5-HIAA concentrations were unaffected. Individual changes in glutamate and AA dialysate concentrations were negatively correlated. 3. d-Amphetamine (0.2 mM), given intrastriatally, increased DA and decreased DOPAC + HVA and aspartate dialysate concentrations, but failed to change those of glutamate, AA uric acid or 5-HIAA, over a 2 h period after d-amphetamine. Haloperidol (0.1 mM), given intrastriatally, increased aspartate concentrations without affecting those of glutamate or AA. 4. d-Amphetamine (0.2 mM), given intranigrally, increased AA and uric acid dialysate concentrations and decreased those of glutamate, aspartate and DA; DOPAC + HVA and 5-HIAA concentrations were unaffected. 5. These results suggest that d-amphetamine-induced increases in AA and uric acid and decreases in glutamate concentrations are triggered at nigral sites. The changes in aspartate levels may be evoked by at least two mechanisms: striatal (mediated by inhibitory dopaminergic receptors) and nigral (activation of amino acid carrier-mediated uptake).


Subject(s)
Ascorbic Acid/metabolism , Dextroamphetamine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Glutamic Acid/metabolism , Neostriatum/metabolism , Uric Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Dextroamphetamine/administration & dosage , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Dopamine Uptake Inhibitors/administration & dosage , Haloperidol/pharmacology , In Vitro Techniques , Injections , Male , Microdialysis , Motor Activity/drug effects , Neostriatum/drug effects , Oxidation-Reduction , Rats , Rats, Wistar , Stereotaxic Techniques , Stereotyped Behavior/drug effects
9.
Br J Pharmacol ; 131(4): 836-42, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11030735

ABSTRACT

The effects of intrastriatal infusion of 3-morpholinosydnonimine (SIN-1) or sodium nitroprusside (SNP) on dopamine (DA), 3-methoxytyramine (3-MT), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), L-dihydroxyphenylalanine (L-DOPA), ascorbic acid and uric acid concentrations in dialysates from the striatum of freely moving rats were evaluated using microdialysis. SIN-1 (1 mM) infusion for 180 min increased microdialysate DA and 3-MT concentrations, while L-DOPA, DOPCA+HVA, ascorbic acid and uric acid levels were unaffected. Co-infusion with ascorbic acid (0.1 mM) inhibited SIN-1-induced increases in DA and 3-MT dialysate concentration. SNP (1 mM) infusion for 180 min increased greatly the dialysate DA concentration to a peak (2950% of baseline) at the end of the infusion, while increases in 3-MT were negligible. In addition, SNP decreased ascorbic acid and L-DOPA but increased uric acid concentration in the dialysate. Co-infusion with deferoxamine (0.2 mM) inhibited the late SNP-induced increase in DA dialysate concentration, but did not affect the decrease in ascorbic acid and increase uric acid dialysate concentrations. SNP (1 mM) infusion for 20 min moderately increased uric acid, DA and 3-MT, but decreased L-DOPA levels in the dialysate. Ascorbic acid concentration increased at the end of SNP infusion. Co-infusion with ascorbic acid (0.1 mM) inhibited the SNP-induced increase in DA and 3-MT, but did not affect the decrease in L-DOPA and increase in uric acid dialysate concentrations. These results suggest that NO released from SIN-1 may account for the increase in the dialysate DA concentration. NO released following decomposition of SNP may account for the early increase in dialysate DA, while late changes in microdialysate composition following SNP may result from an interaction between NO and the ferrocyanide moiety of SNP. Exogenous ascorbic acid inhibits the effect of exogenous NO on DA release probably by scavenging NO, suggesting that endogenous ascorbic acid may modulate the NO control of DA release from 300 striatal dopaminergic terminals.


Subject(s)
Ascorbic Acid/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Iron/physiology , Molsidomine/analogs & derivatives , Nitric Oxide Donors/pharmacology , Nitric Oxide/physiology , Nitroprusside/pharmacology , Animals , Deferoxamine/pharmacology , Male , Microdialysis , Molsidomine/pharmacology , Rats , Rats, Wistar
10.
Brain Res Mol Brain Res ; 92(1-2): 138-48, 2001 Aug 15.
Article in English | MEDLINE | ID: mdl-11483250

ABSTRACT

The effects of long-term exposure to, and subsequent withdrawal of, diazepam or imidazenil (full and partial agonists of the benzodiazepine receptor, respectively) on the abundance of GABA(A) receptor subunit mRNAs and peptides were investigated in rat cerebellar granule cells in culture. Exposure of cells to 10 microM diazepam for 5 days significantly reduced the amounts of alpha(1) and gamma(2) subunit mRNAs, and had no effect on the amount of alpha(4) mRNA. These effects were accompanied by a decrease in the levels of alpha(1) and gamma(2) protein and by a reduction in the efficacy of diazepam with regard to potentiation of GABA-evoked Cl- current. Similar long-term treatment with 10 microM imidazenil significantly reduced the abundance of only the gamma(2)S subunit mRNA and had no effect on GABA(A) receptor function. Withdrawal of diazepam or imidazenil induced a marked increase in the amount of alpha(4) mRNA; withdrawal of imidazenil also reduced the amounts of alpha(1) and gamma(2) mRNAs. In addition, withdrawal of diazepam or imidazenil was associated with a reduced ability of diazepam to potentiate GABA action. These data give new insights into the different molecular events related to GABA(A) receptor gene expression and function produced by chronic treatment and withdrawal of benzodiazepines with full or partial agonist properties.


Subject(s)
Anti-Anxiety Agents/pharmacology , Benzodiazepines/pharmacology , Diazepam/pharmacology , GABA Agonists/pharmacology , Imidazoles/pharmacology , Nerve Tissue Proteins/biosynthesis , Receptors, GABA-A/biosynthesis , Up-Regulation/drug effects , Animals , Anti-Anxiety Agents/administration & dosage , Benzodiazepines/administration & dosage , Cell Membrane/drug effects , Cells, Cultured , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/metabolism , Chloride Channels/drug effects , Chloride Channels/metabolism , Chlorides/metabolism , Diazepam/administration & dosage , Drug Tolerance/genetics , Drug Tolerance/physiology , Female , Flumazenil/administration & dosage , Flumazenil/pharmacology , GABA Agonists/administration & dosage , GABA Antagonists/pharmacology , GABA-A Receptor Agonists , GABA-A Receptor Antagonists , Imidazoles/administration & dosage , Ion Transport/drug effects , Membrane Potentials/drug effects , Microinjections , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Oocytes , Protein Subunits , RNA, Messenger/biosynthesis , Rats , Receptors, GABA-A/genetics , Substance Withdrawal Syndrome/genetics , Substance Withdrawal Syndrome/metabolism , Substance-Related Disorders/genetics , Substance-Related Disorders/metabolism , Xenopus laevis
11.
Neurochem Int ; 31(2): 169-76, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9220449

ABSTRACT

Oxidative stress is thought to play a key role in the apoptotic death of several cellular systems, including neurons. Oxidative stress is proposed also as a mechanism of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and manganese (Mn)-induced neuronal death. We have recently shown that Mn and the MPTP analogue 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine (2'Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2'-ethylphenyl)-pyridinium ion, induce apoptosis in PC12 cells. In the present study, we evaluated the effects of deprenyl and the antioxidant drugs N-acetylcysteine (NAC) and ascorbic acid (AA) on Mn- and 2'Et-MPTP-induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2'-deoxy-uridine-5'-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mn-induced apoptosis and decrease in cell viability was inhibited by the antioxidants NAC and AA. Deprenyl failed to inhibit the above Mn effects. Neither NAC, AA nor deprenyl were able to inhibit both 2'Et-MPTP-induced apoptosis and decrease in cell viability. These results confirm that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized, at least in vitro, only in the Mn-induced apoptosis.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/analogs & derivatives , Apoptosis/physiology , Manganese/pharmacology , Oxidative Stress , PC12 Cells/drug effects , PC12 Cells/physiology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Ascorbic Acid/pharmacology , Cell Survival/drug effects , Rats
12.
Brain Res ; 723(1-2): 154-61, 1996 Jun 03.
Article in English | MEDLINE | ID: mdl-8813393

ABSTRACT

Since ascorbic acid (AA) reportedly suppresses tolerance to and dependence on morphine in humans and rodents, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), AA, dehydroascorbic acid (DHAA), uric acid, xanthine, hypoxanthine, glutamate and gamma-aminobutyric acid (GABA) were determined by high-pressure liquid chromatography (HPLC) in the striatum and in the limbic forebrain of the rat following morphine treatment (single or repeated) and withdrawal. Single morphine administration (20 mg/kg s.c.) increased DOPAC + HVA/DA, 5-HIAA/5-HT and DHAA/AA ratios, uric acid levels, and decreased xanthine, hypoxanthine, glutamate and GABA levels in both regions. 3-MT levels were decreased in the striatum and increased in the limbic forebrain. After 7 days of morphine treatment, striatal DOPAC + HVA/DA and DHAA/AA ratios and uric acid levels were still higher and striatal and limbic xanthine levels still lower than in controls, while all other parameters were in the range of control values in both regions. Morphine treatment also increased the glutamate/GABA ratio in the striatum. In all morphine-treated rats, individual striatal DOPAC + HVA/DA and DHAA/AA ratio values were directly correlated. After a 48 h withdrawal period, both striatal AA oxidation and glutamate/GABA ratio further increased; limbic 3-MT levels further decreased, while all other parameters did not differ from control values. We conclude that: (i) tolerance to morphine-induced increase in hypoxanthine, xanthine and AA oxidation develops in the limbic forebrain faster than in the striatum; (ii) the morphine-induced increase in striatal and limbic AA oxidation may be considered a consequence of increased formation of reactive oxygen species due to increased DA, hypoxanthine and xanthine oxidative metabolism; (iii) a striatal excitotoxic imbalance characterizes the withdrawal state and may be taken into account to explain the further increase in striatal AA oxidation.


Subject(s)
Amines/metabolism , Ascorbic Acid/metabolism , Corpus Striatum/drug effects , Morphine/pharmacology , Prosencephalon/drug effects , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Dopamine/metabolism , Male , Rats , Rats, Wistar , Substance Withdrawal Syndrome , gamma-Aminobutyric Acid/metabolism
13.
Brain Res ; 797(1): 94-102, 1998 Jun 22.
Article in English | MEDLINE | ID: mdl-9630540

ABSTRACT

Recent findings have shown that systemic morphine increases extracellular dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), ascorbic acid (AA) and uric acid concentrations in the striatum of freely moving rats. The morphine-induced increase in DA oxidative metabolism is highly correlated with that of xanthine. In the present study, we evaluated the effects of subcutaneous (s.c.) naloxone (1 mg/kg) on morphine-induced changes in DA, DOPAC, HVA, 5-hydroxyindoleacetic acid (5-HIAA), AA, uric acid and glutamate in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection or (glutamate) ultraviolet detection. Morphine (5-20 mg/kg) given s.c. increased DA, DOPAC+HVA, 5-HIAA, AA and uric acid and decreased glutamate dialysate concentrations over a 3 h period after morphine. Morphine (1 mM), given intrastriatally, did not affect all the above parameters, with the exception of an early short-lasting decrease in AA concentration. Naloxone antagonised all morphine-induced changes with the exception of AA increase and glutamate decrease in dialysate concentrations. Systemic or intrastrial (0.2-2 mM) naloxone increased AA and decreased glutamate dialysate concentrations. When given intranigrally, morphine (1 mM) increased DOPAC+HVA, AA and uric acid and decreased glutamate dialysate concentrations over a 2 h period after morphine; DA and 5-HIAA concentrations were unaffected. These results suggest that: (i) morphine increases striatal DA release and 5-hydroxytryptamine oxidative metabolism by a micro-opioid receptor-mediated mechanism mainly at extranigrostriatal sites; (ii) morphine increases DA and xanthine oxidative metabolism and affects glutamate and AA release by a micro-opioid receptor mediated mechanism acting also at nigral sites; and (iii) a micro-opioid receptor-mediated mechanism tonically controls at striatal sites extracellular AA and glutamate concentrations.


Subject(s)
Analgesics, Opioid/pharmacology , Ascorbic Acid/metabolism , Dopamine/metabolism , Glutamic Acid/metabolism , Morphine/pharmacology , Uric Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Homovanillic Acid/metabolism , Hydroxyindoleacetic Acid/metabolism , Locomotion/physiology , Male , Microdialysis , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Rats , Rats, Wistar , Substantia Nigra/drug effects , Substantia Nigra/metabolism
14.
Brain Res ; 745(1-2): 173-82, 1997 Jan 16.
Article in English | MEDLINE | ID: mdl-9037407

ABSTRACT

Recent ex vivo findings have shown that morphine increases dopamine (DA) and xanthine oxidative metabolism and ascorbic acid (AA) oxidation in the rat striatum. In the present study, we evaluated the effects of subcutaneous daily morphine (20 mg/kg) administration on DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), AA and uric acid in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection. On the first day, morphine administration caused a significant increase in extracellular DA, DOPAC, HVA, AA and uric acid concentrations over a 3 h period after morphine. In all treated rats (n = 7), individual concentrations of DOPAC + HVA were directly correlated with individual AA and uric acid concentrations. Last morphine administration on the 4th day increased DOPAC, HVA, AA and uric acid concentrations but failed to increase those of DA. Individual DOPAC + HVA concentrations were still directly correlated with individual AA and uric acid concentrations. These results suggest that systemic morphine increases both striatal DA release and DA and xanthine oxidative metabolism. Only the former effect undergoes tolerance. The increase in DA oxidative metabolism is highly correlated with that of xanthine. The subsequent enhancement in reactive oxygen species production may account for the increase in extracellular AA.


Subject(s)
Ascorbic Acid/metabolism , Dopamine/metabolism , Morphine/pharmacology , Narcotics/pharmacology , Neostriatum/metabolism , Uric Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Homovanillic Acid/metabolism , Male , Microdialysis , Neostriatum/drug effects , Rats , Rats, Wistar
15.
Eur J Pharmacol ; 205(1): 97-100, 1991 Nov 19.
Article in English | MEDLINE | ID: mdl-1812002

ABSTRACT

Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), and uric acid were determined in the rat striatum following single apomorphine (1 mg/kg), scopolamine (0.6 mg/kg), pilocarpine (4 mg/kg), or pilocarpine + scopolamine (4 and 0.6 mg/kg, respectively) injections. The decrease in DOPAC levels and in the DOPAC/DA ratio, induced by the pharmacological manipulation, was linearly correlated with the increase in DHAA levels (r = -0.9060, P less than 0.05) and with the increase in the DHAA/AA ratio (r = -0.9004, P less than 0.05), respectively. It is concluded that dopaminergic activation or cholinergic inhibition both increase striatal AA oxidation, which is correlated with a decrease in DA turnover.


Subject(s)
Ascorbic Acid/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Uric Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Apomorphine/pharmacology , Body Temperature/drug effects , Dehydroascorbic Acid/metabolism , Male , Motor Activity/drug effects , Oxidation-Reduction , Pilocarpine/pharmacology , Rats , Rats, Inbred Strains , Scopolamine/pharmacology , Stereotyped Behavior/drug effects
16.
Eur J Pharmacol ; 219(1): 67-74, 1992 Aug 14.
Article in English | MEDLINE | ID: mdl-1356809

ABSTRACT

Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid and dehydroascorbic acid (DHAA) were measured by HPLC in the striatum of rats whose fronto-parietal cortex had been unilaterally ablated after a single injection of apomorphine (1 mg/kg s.c.), scopolamine (0.6 mg/kg s.c.) or L-glutamate (500 mg/kg i.p.). Unilateral cortical ablation decreased striatal levels of glutamate in both striata ipsilateral (35%) and contralateral (17-25%) to the lesion. Apomorphine and scopolamine significantly increased (+94 and +122%, respectively) the DHAA/ascorbic acid ratio in the striata ipsilateral to the lesion in unoperated and sham-operated rats (+72 and +34%, respectively), but both drugs failed to increase it in ablated rats. L-Glutamate significantly increased the DHAA/ascorbic acid ratio in unoperated (+53%) and ablated rats (+37%). The increase in sham-operated rats (+34%) did not reach statistical significance. Apomorphine and scopolamine significantly decreased the DOPAC/DA ratio in the striata ipsilateral to the lesion of unoperated, sham-operated and ablated rats. The decrease in the DOPAC/DA ratio induced by apomorphine and scopolamine was greater in ablated rats than in sham-operated rats. L-Glutamate induced only minor changes in striatal DA and DOPAC levels. We conclude that the apomorphine- and scopolamine-induced increase in ascorbic acid oxidation in the striatum requires intact cortico-striatal glutamatergic pathways. Cortical ablation potentiates the apomorphine- and scopolamine-induced inhibition of striatal DA turnover.


Subject(s)
Apomorphine/pharmacology , Ascorbic Acid/metabolism , Cerebral Cortex/physiology , Corpus Striatum/metabolism , Dopamine/metabolism , Scopolamine/pharmacology , 3,4-Dihydroxyphenylacetic Acid/analysis , Animals , Ascorbic Acid/analysis , Corpus Striatum/chemistry , Corpus Striatum/drug effects , Glutamates/analysis , Glutamates/pharmacology , Glutamic Acid , Male , Rats , Rats, Inbred Strains
17.
Neurosci Lett ; 127(1): 34-8, 1991 Jun 10.
Article in English | MEDLINE | ID: mdl-1881615

ABSTRACT

Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA) and dehydroascorbic acid (DHAA) were determined by HPLC in the striatum of male Wistar rats after single or repeated injections of apomorphine (1 mg/kg/day s.c.) and/or haloperidol (1 mg/kg/day i.p.), and 24 h after the last drug administration. Apomorphine significantly reduced the DOPAC/DA ratio and increased the DHAA/AA ratio; these ratio changes were significantly correlated (r = -0.9969, P less than 0.0005). Haloperidol greatly increased the DOPAC/DA ratio; the DHAA/AA ratio was also slightly increased, but there was no significant correlation. When apomorphine was associated with haloperidol, the resulting DOPAC/DA ratio was significantly lower than after haloperidol alone; the DHAA/AA ratio was also significantly reduced in contrast to the effect of apomorphine alone. It is concluded that a non-selective DA receptor activation mediates, in a correlated way, both the inhibition of DA turnover and the increase of AA oxidation in the rat striatum.


Subject(s)
Ascorbic Acid/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Animals , Apomorphine/pharmacology , Dopamine Antagonists , Haloperidol/pharmacology , In Vitro Techniques , Male , Rats , Rats, Inbred Strains
18.
Neurosci Lett ; 183(3): 155-9, 1995 Jan 09.
Article in English | MEDLINE | ID: mdl-7739783

ABSTRACT

Levels of uric acid, xanthine, hypoxanthine, ascorbic acid (AA), dehydroascorbic acid (DHAA), glutathione (GSH), noradrenaline (NA), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined in the striatum and/or in the brainstem of 3-month-old male Wistar rats, given allopurinol (500 mg/kg day by gavage) for 3 days before a single MPTP 52 mg/kg dose i.p. Allopurinol alone decreased uric acid and hypoxanthine levels in the striatum and in the brainstem; moreover, allopurinol increased AA oxidation and decreased striatal DA metabolites. Allopurinol affected neither regional MPTP and MPP+ levels nor the MPTP-induced inhibition of striatal DA oxidative metabolism. On the contrary, the MPTP-induced increase in uric acid levels and decrease in xanthine, hypoxanthine and NA levels were fully antagonised. Such findings demonstrate that the claimed MPP(+)-induced oxidative stress mediated by xanthine oxidase may be involved at least in the NA depletion; moreover, uric acid may have a physiological role as an active component of the neuronal antioxidant pool.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors , Allopurinol/pharmacology , Brain Stem/metabolism , Neostriatum/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenylpyridinium/metabolism , Animals , Ascorbic Acid/metabolism , Brain Stem/drug effects , Dopamine/metabolism , Dopamine/physiology , Glutathione/metabolism , Hypoxanthine , Hypoxanthines/metabolism , Male , Neostriatum/drug effects , Norepinephrine/physiology , Rats , Rats, Wistar , Uric Acid/metabolism , Xanthines/metabolism
19.
Neurosci Lett ; 139(1): 29-33, 1992 May 11.
Article in English | MEDLINE | ID: mdl-1407680

ABSTRACT

Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA) and dehydroascorbic acid (DHAA) levels were determined by HPLC in the striatal synaptosomal fraction and in the whole striatum of rats, whose fronto-parietal cortex had been bilaterally ablated, after a single injection of d-amphetamine (2.0 mg/kg i.p.). d-Amphetamine significantly increased the DHAA/AA ratio in unoperated and sham-operated rats, but failed to increase it in ablated rats, as compared to pertinent saline-treated groups. In the synaptosomal fraction, d-amphetamine significantly decreased the DHAA/AA ratio in unoperated, sham-operated and ablated rats. d-Amphetamine significantly decreased the DOPAC/DA ratio in the whole striatum and significantly increased it in the striatal synaptosomal fraction in all experimental groups. Cortical ablation greatly increased d-amphetamine-induced motor hyperactivity. We conclude that the d-amphetamine-induced increase in AA striatal oxidation requires integrity of the cortico-striatal glutamatergic pathways. Further, AA oxidation occurs in the extracellular space. The cortico-striatal glutamatergic pathways exert an inhibitory modulation on d-amphetamine behavioral effects.


Subject(s)
Ascorbic Acid/metabolism , Cerebral Cortex/physiology , Corpus Striatum/metabolism , Dextroamphetamine/pharmacology , Dopamine/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Chromatography, High Pressure Liquid , Corpus Striatum/drug effects , Dehydroascorbic Acid/metabolism , In Vitro Techniques , Male , Motor Activity/drug effects , Rats , Rats, Wistar , Stereotyped Behavior/drug effects , Synaptosomes/drug effects , Synaptosomes/metabolism
20.
Neurosci Lett ; 209(3): 193-6, 1996 May 17.
Article in English | MEDLINE | ID: mdl-8736643

ABSTRACT

Oxidative stress is thought to play a key role both in the neurotoxin MPTP- and manganese (Mn)-induced neurotoxicity and in apoptotic cell death. In the present study, we report that Mn and the MPTP analogue 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine (2'Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2'-ethylphenyl)-pyridinium ion (at concentrations of 0.5 and 1.0 mM), induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2'-deoxy-uridine-5'-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Both Mn and 2'Et-MPTP induced also a time-dependent decrease in cell viability, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Only Mn-induced apoptosis and decrease in cell viability were inhibited by the antioxidant ascorbic acid. We conclude that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized only in the Mn-induced apoptosis.


Subject(s)
Apoptosis/drug effects , Manganese/pharmacology , Animals , Ascorbic Acid/pharmacology , Cell Survival/drug effects , Flow Cytometry , Genetic Techniques , Manganese/antagonists & inhibitors , Microscopy, Fluorescence , Oxidative Stress/drug effects , PC12 Cells , Rats , Uridine Triphosphate/genetics , Uridine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL