Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
FASEB J ; 29(2): 374-84, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25366344

ABSTRACT

ß1 integrins (ß1) transduce mechanical signals in many cells, including cardiac myocytes (CM). Given their close localization, as well as their role in mechanotransduction and signaling, we hypothesized that caveolin (Cav) proteins might regulate integrins in the CM. ß1 localization, complex formation, activation state, and signaling were analyzed using wild-type, Cav3 knockout, and Cav3 CM-specific transgenic heart and myocyte samples. Studies were performed under basal and mechanically loaded conditions. We found that: (1) ß1 and Cav3 colocalize in CM and coimmunoprecipitate from CM protein lysates; (2) ß1 is detected in a subset of caveolae; (3) loss of Cav3 caused reduction of ß1D integrin isoform and active ß1 integrin from the buoyant domains in the heart; (4) increased expression of myocyte Cav3 correlates with increased active ß1 integrin in adult CM; (5) in vivo pressure overload of the wild-type heart results in increased activated integrin in buoyant membrane domains along with increased association between active integrin and Cav3; and (6) Cav3-deficient myocytes have perturbed basal and stretch mediated signaling responses. Thus, Cav3 protein can modify integrin function and mechanotransduction in the CM and intact heart.


Subject(s)
Caveolin 3/metabolism , Integrins/metabolism , Myocytes, Cardiac/metabolism , Animals , Aorta/pathology , Cell Membrane/metabolism , Heart/physiology , Integrin beta1/metabolism , Mechanotransduction, Cellular/physiology , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Immunoelectron , Myocytes, Cardiac/cytology , Protein Structure, Tertiary , Sarcolemma/metabolism , Signal Transduction
2.
Sci Rep ; 14(1): 13990, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38886462

ABSTRACT

In this retrospective case series on neovascular age-related macular degeneration (nAMD), we aimed to improve Choroidal Neovascularization (CNV) visualization in Optical Coherence Tomography Angiography (OCTA) scans by addressing segmentation errors. Out of 198 eyes, 73 OCTA scans required manual segmentation correction. We compared uncorrected scans to those with minimal (2 corrections), moderate (10 corrections), and detailed (50 corrections) efforts targeting falsely segmented Bruch's Membrane (BM). Results showed that 55% of corrected OCTAs exhibited improved quality after manual correction. Notably, minimal correction (2 scans) already led to significant improvements, with additional corrections (10 or 50) not further enhancing expert grading. Reduced background noise and improved CNV identification were observed, with the most substantial improvement after two corrections compared to baseline uncorrected images. In conclusion, our approach of correcting segmentation errors effectively enhances image quality in OCTA scans of nAMD. This study demonstrates the efficacy of the method, with 55% of resegmented OCTA images exhibiting enhanced quality, leading to a notable increase in the proportion of high-quality images from 63 to 83%.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Tomography, Optical Coherence , Humans , Choroidal Neovascularization/diagnostic imaging , Choroidal Neovascularization/pathology , Tomography, Optical Coherence/methods , Female , Male , Retrospective Studies , Aged , Macular Degeneration/diagnostic imaging , Macular Degeneration/pathology , Macular Degeneration/complications , Aged, 80 and over , Image Processing, Computer-Assisted/methods , Middle Aged , Fluorescein Angiography/methods
3.
Cells ; 12(24)2023 12 07.
Article in English | MEDLINE | ID: mdl-38132105

ABSTRACT

Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Rodentia/metabolism , Muscle Fibers, Skeletal/metabolism , Glucose/metabolism , Insulin/metabolism , Hyperglycemia/metabolism , Palmitates/metabolism , Adenosine Triphosphate/metabolism
4.
IEEE Int Conf Comput Vis Workshops ; 2023: 2403-2412, 2023 Oct.
Article in English | MEDLINE | ID: mdl-39176054

ABSTRACT

Age-related Macular Degeneration (AMD) is a degenerative eye disease that causes central vision loss. Optical Coherence Tomography Angiography (OCTA) is an emerging imaging modality that aids in the diagnosis of AMD by displaying the pathogenic vessels in the subretinal space. In this paper, we investigate the effectiveness of OCTA from the view of deep classifiers. To the best of our knowledge, this is the first study that solely uses OCTA for AMD stage grading. By developing a 2D classifier based on OCTA projections, we identify that segmentation errors in retinal layers significantly affect the accuracy of classification. To address this issue, we propose analyzing 3D OCTA volumes directly using a 2D convolutional neural network trained with additional projection supervision. Our experimental results show that we achieve over 80% accuracy on a four-stage grading task on both error-free and error-prone test sets, which is significantly higher than 60%, the accuracy of human experts. This demonstrates that OCTA provides sufficient information for AMD stage grading and the proposed 3D volume analyzer is more robust when dealing with OCTA data with segmentation errors.

SELECTION OF CITATIONS
SEARCH DETAIL