Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EMBO Rep ; 23(12): e55648, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36285486

ABSTRACT

Methylation of the mRNA 5' cap by cellular methyltransferases enables efficient translation and avoids recognition by innate immune factors. Coronaviruses encode viral 2'-O-methyltransferases to shield their RNA from host factors. Here, we generate recombinant SARS-CoV-2 harboring a catalytically inactive 2'-O-methyltransferase Nsp16, Nsp16mut, and analyze viral replication in human lung epithelial cells. Although replication is only slightly attenuated, we find SARS-CoV-2 Nsp16mut to be highly immunogenic, resulting in a strongly enhanced release of type I interferon upon infection. The elevated immunogenicity of Nsp16mut is absent in cells lacking the RNA sensor MDA5. In addition, we report that Nsp16mut is highly sensitive to type I IFN treatment and demonstrate that this strong antiviral effect of type I IFN is mediated by the restriction factor IFIT1. Together, we describe a dual role for the 2'-O-methyltransferase Nsp16 during SARS-CoV-2 replication in avoiding efficient recognition by MDA5 and in shielding its RNA from interferon-induced antiviral responses, thereby identifying Nsp16 as a promising target for generating attenuated and highly immunogenic SARS-CoV-2 strains and as a potential candidate for therapeutic intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA , Methyltransferases/genetics , RNA-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics
2.
Proc Natl Acad Sci U S A ; 117(30): 17965-17976, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32651277

ABSTRACT

Mobile genetic elements have significantly shaped our genomic landscape. LINE-1 retroelements are the only autonomously active elements left in the human genome. Since new insertions can have detrimental consequences, cells need to efficiently control LINE-1 retrotransposition. Here, we demonstrate that the intrinsic immune factor TRIM5α senses and restricts LINE-1 retroelements. Previously, rhesus TRIM5α has been shown to efficiently block HIV-1 replication, while human TRIM5α was found to be less active. Surprisingly, we found that both human and rhesus TRIM5α efficiently repress human LINE-1 retrotransposition. TRIM5α interacts with LINE-1 ribonucleoprotein complexes in the cytoplasm, which is essential for restriction. In line with its postulated role as pattern recognition receptor, we show that TRIM5α also induces innate immune signaling upon interaction with LINE-1 ribonucleoprotein complexes. The signaling events activate the transcription factors AP-1 and NF-κB, leading to the down-regulation of LINE-1 promoter activity. Together, our findings identify LINE-1 as important target of human TRIM5α, which restricts and senses LINE-1 via two distinct mechanisms. Our results corroborate TRIM5α as pattern recognition receptor and shed light on its previously undescribed activity against mobile genetic elements, such as LINE-1, to protect the integrity of our genome.


Subject(s)
Long Interspersed Nucleotide Elements , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Antiviral Restriction Factors , Gene Expression , Genes, Reporter , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Macaca mulatta , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Signal Transduction , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
3.
Viruses ; 15(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36851610

ABSTRACT

Live-attenuated SARS-CoV-2 vaccines present themselves as a promising approach for the induction of broad mucosal immunity. However, for initial safety assessment in clinical trials, virus production requires conditions meeting Good Manufacturing Practice (GMP) standards while maintaining biosafety level 3 (BSL-3) requirements. Since facilities providing the necessary complex ventilation systems to meet both requirements are rare, we here describe a possibility to reproducibly propagate SARS-CoV-2 in the automated, closed cell culture device CliniMACS Prodigy® in a common BSL-3 laboratory. In this proof-of-concept study, we observed an approximately 300-fold amplification of SARS-CoV-2 under serum-free conditions with high lot-to-lot consistency in the infectious titers obtained. With the possibility to increase production capacity to up to 3000 doses per run, this study outlines a potential fast-track approach for the production of live-attenuated vaccine candidates based on highly pathogenic viruses under GMP-like conditions that may contribute to pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Vaccines, Attenuated , Cell Culture Techniques
4.
Viruses ; 13(3)2021 03 02.
Article in English | MEDLINE | ID: mdl-33801276

ABSTRACT

The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.


Subject(s)
DNA Virus Infections/immunology , Host-Pathogen Interactions/immunology , Retroviridae Infections/immunology , SAM Domain and HD Domain-Containing Protein 1/immunology , DNA Viruses/immunology , Humans , Retroviridae/immunology , Viral Interference
5.
Nat Microbiol ; 4(12): 2260-2272, 2019 12.
Article in English | MEDLINE | ID: mdl-31548682

ABSTRACT

The host restriction factor sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is an important component of the innate immune system. By regulating the intracellular nucleotide pool, SAMHD1 influences cell division and restricts the replication of viruses that depend on high nucleotide concentrations. Human cytomegalovirus (HCMV) is a pathogenic virus with a tropism for non-dividing myeloid cells, in which SAMHD1 is catalytically active. Here we investigate how HCMV achieves efficient propagation in these cells despite the SAMHD1-mediated dNTP depletion. Our analysis reveals that SAMHD1 has the capability to suppress HCMV replication. However, HCMV has evolved potent countermeasures to circumvent this block. HCMV interferes with SAMHD1 steady-state expression and actively induces SAMHD1 phosphorylation using the viral kinase pUL97 and by hijacking cellular kinases. These actions convert SAMHD1 to its inactive phosphorylated form. This mechanism of SAMHD1 inactivation by phosphorylation might also be used by other viruses to overcome intrinsic immunity.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/metabolism , Macrophages/immunology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Viral Proteins/metabolism , Cytomegalovirus/pathogenicity , HEK293 Cells , Humans , Immunity, Innate , Macrophages/virology , Phosphorylation , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/pharmacology , THP-1 Cells , Virus Replication/drug effects
6.
Nat Microbiol ; 4(12): 2273-2284, 2019 12.
Article in English | MEDLINE | ID: mdl-31548683

ABSTRACT

The deoxynucleotide triphosphate (dNTP) hydrolase SAMHD1 inhibits retroviruses in non-dividing myeloid cells. Although antiviral activity towards DNA viruses has also been demonstrated, the role of SAMHD1 during cytomegalovirus (CMV) infection remains unclear. To determine the impact of SAMHD1 on the replication of CMV, we used murine CMV (MCMV) to infect a previously established SAMHD1 knockout mouse model and found that SAMHD1 inhibits the replication of MCMV in vivo. By comparing the replication of MCMV in vitro in myeloid cells and fibroblasts from SAMHD1-knockout and control mice, we found that the viral kinase M97 counteracts SAMHD1 after infection by phosphorylating the regulatory residue threonine 603. The phosphorylation of SAMHD1 in infected cells correlated with a reduced level of dNTP hydrolase activity and the loss of viral restriction. Together, we demonstrate that SAMHD1 acts as a restriction factor in vivo and we identify the M97-mediated phosphorylation of SAMHD1 as a previously undescribed viral countermeasure.


Subject(s)
Muromegalovirus/drug effects , Phosphotransferases/metabolism , SAM Domain and HD Domain-Containing Protein 1/antagonists & inhibitors , SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Antiviral Agents/pharmacology , Colony-Stimulating Factors/metabolism , Disease Models, Animal , HEK293 Cells , Herpesviridae Infections/drug therapy , Herpesviridae Infections/virology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/enzymology , Muromegalovirus/growth & development , NIH 3T3 Cells , Phosphorylation , Recombinant Proteins , SAM Domain and HD Domain-Containing Protein 1/genetics , Transcriptome , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL