Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hum Mutat ; 41(10): 1797-1810, 2020 10.
Article in English | MEDLINE | ID: mdl-32668095

ABSTRACT

Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.


Subject(s)
Calpain , Muscle Proteins , Muscular Dystrophies, Limb-Girdle , Calpain/genetics , Exons/genetics , Humans , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Mutation, Missense , RNA Splicing
2.
Hum Mutat ; 36(4): 443-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25615407

ABSTRACT

Facioscapulohumeralmuscular dystrophy (FSHD) is linked to copy-number reduction (N < 10) of the 4q D4Z4 subtelomeric array, in association with DUX4-permissive haplotypes. This main form is indicated as FSHD1. FSHD-like phenotypes may also appear in the absence of D4Z4 copy-number reduction. Variants of the SMCHD1 gene have been reported to associate with D4Z4 hypomethylation in DUX4-compatible haplotypes, thus defining FSHD2. Recently, mice carrying a muscle-specific knock-out of the protocadherin gene Fat1 or its constitutive hypomorphic allele were shown to develop muscular and nonmuscular defects mimicking human FSHD. Here, we report FAT1 variants in a group of patients presenting with neuromuscular symptoms reminiscent of FSHD. The patients do not carry D4Z4 copy-number reduction, 4q hypomethylation, or SMCHD1 variants. However, abnormal splicing of the FAT1 transcript is predicted for all identified variants. To determine their pathogenicity, we elaborated a minigene approach coupled to an antisense oligonucleotide (AON) assay. In vitro, four out of five selected variants induced partial or complete alteration of splicing by creating new splice sites or modifying splicing regulators. AONs confirmed these effects. Altered transcripts may affect FAT1 protein interactions or stability. Altogether, our data suggest that defective FAT1 is associated with an FSHD-like phenotype.


Subject(s)
Cadherins/genetics , Chromosomes, Human, Pair 4 , Genetic Variation , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Phenotype , Adolescent , Adult , Aged , Alleles , Alternative Splicing , Child , Child, Preschool , DNA Methylation , Exons , Gene Expression , Genes, Reporter , Humans , Infant , Infant, Newborn , Middle Aged , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Young Adult
4.
J Neuromuscul Dis ; 2(3): 281-290, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-27858744

ABSTRACT

Dysferlinopathies are a family of disabling muscular dystrophies with LGMD2B and Miyoshi myopathy as the main phenotypes. They are associated with molecular defects in DYSF, which encodes dysferlin, a key player in sarcolemmal homeostasis. Previous investigations have suggested that exon skipping may be a promising therapy for a subset of patients with dysferlinopathies. Such an approach aims to rescue functional proteins when targeting modular proteins and specific tissues.We sought to evaluate the dysferlin functional recovery following exon 32 skipping in the cells of affected patients. Exon skipping efficacy was characterized at several levels by use of in vitro myotube formation assays and quantitative membrane repair and recovery tests. Data obtained from these assessments confirmed that dysferlin function is rescued by quasi-dysferlin expression in treated patient cells, supporting the case for a therapeutic antisense-based trial in a subset of dysferlin-deficient patients.

SELECTION OF CITATIONS
SEARCH DETAIL