Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mar Environ Res ; 193: 106292, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064897

ABSTRACT

Soil metal pollution has been widely studied in salt marshes but mainly regarding non-essential metals. The aim of this study was to assess the levels of two essential metals (Fe and Mn) and one non-essential one (Cd) in Spartina alterniflora salt marshes in a South American estuary in order to evaluate the potential of this species as a phytoremediator and/or bioindicator of Fe, Mn and Cd and to analyze the distribution of these metals according to the edaphic conditions. The metals present in the soils varied among the three sites studied according to the content of organic matter and fine sediments. In comparison with other Spartina-dominated salt marshes worldwide, in this study Fe and Mn were approximately in the same range, whereas Cd levels were always lower, with a high number of samples below the method detection limit (MDL). All metals were highly correlated with each other suggesting an association of Cd with Mn and Fe oxides/hydroxides or sulfides and/or a common anthropogenic source. Metals in plant tissues also varied from site to site and between the aboveground and belowground tissues. Compared to the metal levels in Spartina tissues in other salt marshes, our levels of Fe and Mn were in the same range, whereas the Cd levels were lower, among most samples, especially those from aboveground tissues that were below the MDL. The bioconcentration factor (metal in belowground tissues/metal in soil) was always lower than one for Fe and Mn meaning that there is no accumulation of these metals in belowground tissues, but this factor for Cd was sometimes higher than one, even as high as 3.45, implying that S. alterniflora can accumulate this metal in its tissues, pointing to a potential role of this species in Cd phytoremediation. Translocation factors (metal in aboveground tissues/metal in belowground tissues) were always lower than one for Fe and could not be calculated for Cd but were usually higher than one for Mn, showing the role of this element in photosynthetic tissues and a possible function of this species for phytoextraction of Mn. In most samples the Fe levels in plant tissues were higher than the permissible levels reported in the literature, suggesting a potential role of S. alterniflora in Fe phytoremediation. No correlation was observed between metal concentrations in soils and aboveground tissues; therefore, S.alterniflora is not a good bioindicator for the metals studied. Although our results are not conclusive, they reinforce the importance of local edaphic conditions on the behavior of metals in salt marshes and shed light on the potential role of S. alterniflora in the phytoremediation of highly toxic metals such as Cd or poorly studied metals such as Fe and Mn.


Subject(s)
Estuaries , Metals, Heavy , Cadmium , Environmental Biomarkers , Metals , Wetlands , Poaceae , Soil , South America , Metals, Heavy/analysis
2.
Mar Pollut Bull ; 200: 116087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335631

ABSTRACT

Organotin compounds are persistent pollutants and are considered chemicals of high environmental concern. In the present study, the distribution and degradation of tributyltin were evaluated in field sediments and through an ex situ experiment. For this, sediment samples from two locations were analysed: Luis Piedrabuena Harbour, with higher maritime traffic, and Cerro Avanzado, which receives less impact from anthropogenic activities. The results indicated that pollution levels at Luis Piedrabuena Harbour have decreased compared with studies performed 9 years ago for the same area. On the contrary, traces of organotin compounds have been found for the first time at Cerro Avanzado. Moreover, the butyltin degradation index indicated that organotin compounds undergo an advanced degradation process in the collected samples at both sites. Ex situ experiments revealed a limited capacity of sediments to retain tributyltin, and suggested an active role of bioturbation activity in the degradation of these compounds. In addition, visualisation using chemometric techniques (principal components analysis) allowed a simpler analysis of two sediment characteristics: the degree of contamination and the degradation levels of organotin compounds.


Subject(s)
Organotin Compounds , Trialkyltin Compounds , Water Pollutants, Chemical , Organotin Compounds/analysis , Geologic Sediments/chemistry , Argentina , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Trialkyltin Compounds/analysis
3.
Talanta ; 229: 122298, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33838783

ABSTRACT

A new portable and simple 3D printed device was designed for free chlorine determination in water samples. The analytical method was based on the quenching caused by free chlorine on the fluorescence emission of the carbon dots (CD) synthesized from citric acid and urea. The fluorescence was captured through the camera of a smartphone, which was coupled to the 3D printed device, and the images were processed using the RGB system by the ImageJ 1.51q software. The proposed method was selective and precise (RSD% 4.6, for n = 6), and the trueness of the results was evaluated by comparing the results obtained with those recovered by the spectrophotometric method 4500-Cl G (standard method), with good agreement between them. Moreover, the remarkable correlation between the CD signal and the free chlorine concentration resulted in a determination with low detection limits (limit of detection of 6 µg L-1 and limit of quantification of 20 µg L-1). Therefore, the new method and the related portable device could be considered a fast, economical and reliable alternative for the on-site determination of free chlorine in water samples.

4.
Ultrason Sonochem ; 61: 104832, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31675660

ABSTRACT

Over the last years, nanotechnology has contributed to the development of new botanical insecticides formulations based on essential oils (EO), which are safe for the human health and the environment. Nanoemulsions (NEs) can enhance the bioactivity of the EO to prevent the premature volatility and degradation of the active ingredients. In our work, geranium EO (Geranium maculatum L.) was used to develop micro and nanoemulsions adding Tween 80 as surfactant. For NEs formulation, ultrasound was applied and the physicochemical and ultrasound parameters were optimized: oil: surfactant ratio = 1:2, ultrasound power = 65 W, sonication time = 2 min, cycles = 30 on/20 off and ultrasonic probe distance = 3.7 cm. The NEs obtained had 13.58 nm and polydisperse index (PDI) values of 0.069. They were stored at 25 °C and were stable for 60 days. The present study also demonstrated the potential of NEs to enhance the toxicity of geranium EO against larvae of Culex pipiens pipiens (EO LC50 = 80.97 ppm, NEs LC50 = 48.27 ppm) and Plodia interpunctella (EO + ß-cypermethrin LD50 = 0.16 µg larvae-1, NEs + ß-cypermethrin LD50 = 0.07 µg larvae-1). Overall, our findings pointed out that NEs can increase twofold the insecticidal efficacy of EO, and thus, they can be considered further for the development of botanical insecticides.


Subject(s)
Diptera/drug effects , Emulsions/chemistry , Insecticides/pharmacology , Lepidoptera/drug effects , Nanotechnology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL