Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Nature ; 617(7959): 185-193, 2023 05.
Article in English | MEDLINE | ID: mdl-37100902

ABSTRACT

The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane ß-barrel proteins (OMPs) that are essential interchange portals of materials1-3. All known OMPs share the antiparallel ß-strand topology4, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial ß-barrel assembly machinery (BAM) to initiate OMP folding5,6; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.


Subject(s)
Bacterial Outer Membrane Proteins , Escherichia coli Proteins , Escherichia coli , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Molecular Dynamics Simulation , Protein Folding , Substrate Specificity
2.
PLoS Biol ; 22(5): e3002628, 2024 May.
Article in English | MEDLINE | ID: mdl-38814940

ABSTRACT

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Subject(s)
Adenosine Triphosphate , Cell Division , Escherichia coli Proteins , Escherichia coli , Peptidoglycan , Peptidoglycan/metabolism , Hydrolysis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Cell Wall/metabolism , Protein Conformation , Models, Molecular , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , Bacterial Outer Membrane Proteins , ATP-Binding Cassette Transporters , Cystic Fibrosis Transmembrane Conductance Regulator , Lipoproteins , Cell Cycle Proteins
3.
BMC Nephrol ; 24(1): 51, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899322

ABSTRACT

BACKGROUND: Bevacizumab is a monoclonal antibody drug targeting Vascular Endothelial Growth Factor (VEGF), which binds to VEGF receptors to inhibit vascular endothelial cell proliferation and angiogenesis, thus inhibiting tumorigenesis. Pembrolizumab is a monoclonal antibody that can bind to the programmed death-1 (PD-1) receptor, which can block the binding of the PD-1 receptor to its ligands PD-L1 and PD-L2, and release PD-1 pathway-mediated suppression of immune responses. By blocking the activity of PD-1, the purpose of inhibiting tumor growth is achieved. CASE PRESENTATION: We report a severe hematuria of bevacizumab plus pembrolizumab, in a 58-year-old woman with metastatic cervical cancer. After three cycles every three weeks of consolidation chemotherapy (carboplatin, paclitaxel, bevacizumab) and following three cycles consolidation chemotherapy (carboplatin, paclitaxel, bevacizumab, pembrolizumab), the patient presented a worsening state. Manifested as massive gross hematuria with blood clots. After stopping chemotherapy, cefoxitin, tranexamic acid and hemocoagulase atrox therapy was administered resulting in rapid clinical improvement. The patient was a cervical cancer with bladder metastasis that increases the risk of development of hematuria. Inhibition of VEGF, which has anti-apoptotic, anti-inflammatory, and pro-survival influences on endothelial cells, weakens their regenerative capacity and increases expression of proinflammatory genes leading to weakened supporting layers of blood vessels and, hence, to damaged vascular integrity. In our patient, the development of hematuria may result from the anti-VEGF effect of bevacizumab. In addition, pembrolizumab may also cause bleeding, and the mechanism of bleeding caused by pembrolizumab is currently unclear, which may be related to immune mediation. CONCLUSION: To our knowledge, this is the first case reporting on the development of severe hematuria during bevacizumab plus pembrolizumab treatment, which should alert the clinicians in case of bleeding adverse events onset in older patients under bevacizumab plus pembrolizumab therapy.


Subject(s)
Lung Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Aged , Middle Aged , Bevacizumab , Carboplatin/therapeutic use , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/etiology , Vascular Endothelial Growth Factor A , Hematuria/etiology , Endothelial Cells , Programmed Cell Death 1 Receptor , Paclitaxel/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy
4.
Nature ; 531(7592): 64-9, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26901871

ABSTRACT

All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the ß-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane ß-barrel of BamA to induce movement of the ß-strands of the barrel and promote insertion of the nascent OMP.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Crystallography, X-Ray , Lipoproteins/chemistry , Lipoproteins/metabolism , Models, Molecular , Molecular Dynamics Simulation , Movement , Periplasm/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , Rotation
5.
J Pharm Pharm Sci ; 25: 377-390, 2022.
Article in English | MEDLINE | ID: mdl-36608646

ABSTRACT

PURPOSE: Vemurafenib received approval for treatment of BRAF V600 variation metastatic melanoma in August 2011. This study analyzed Vemurafenib-related adverse events (AEs) to detect and characterize relevant safety signals using the real-word-data through the Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: Disproportionality analyses, including the reporting odds ratio (ROR), the healthcare products regulatory agency (MHRA), the Bayesian confidence propagation neural network (BCPNN), and the multiitem gamma Poisson shrinker (MGPS) algorithms, were applied to quantify the signals of vemurafenib-related AEs. RESULTS: Out of 8,042,244 reports gathered from the FAERS, 9554 reports of vemurafenib as the 'primary suspected (PS)' AEs were recognized. Vemurafenib-induced AEs occurrence targeted 23 system organ class (SOC). A total of 138 significant disproportionality PTs was simultaneously reserved according to the four algorithms. Unexpected significant AEs such as sarcoidosis and kidney fibrosis might also occur. The median onset time of vemurafenib-related AEs was 26 days (interquartile range [IQR] 8-97 days), and most of the cases occurred within the first one and two months after vemurafenib initiation. CONCLUSION: Our study detected potential new AEs signals and might provide powerful support for clinical monitoring and risk identification of vemurafenib.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Melanoma , United States , Humans , Pharmacovigilance , Vemurafenib/adverse effects , Adverse Drug Reaction Reporting Systems , Bayes Theorem , Melanoma/drug therapy , United States Food and Drug Administration
6.
Proc Natl Acad Sci U S A ; 115(12): E2706-E2715, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507249

ABSTRACT

Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique ß-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host-microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.


Subject(s)
Bacterial Proteins/chemistry , Gastrointestinal Microbiome , Limosilactobacillus reuteri/physiology , Microbial Interactions , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Animals , Bacterial Adhesion/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Epithelial Cells/microbiology , Hydrogen-Ion Concentration , Limosilactobacillus reuteri/chemistry , Mice , Molecular Dynamics Simulation , Pectins/metabolism , Protein Folding , Repetitive Sequences, Amino Acid , Sequence Homology, Amino Acid , Serine
7.
Nature ; 511(7507): 52-6, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24990744

ABSTRACT

Lipopolysaccharide (LPS) is essential for most Gram-negative bacteria and has crucial roles in protection of the bacteria from harsh environments and toxic compounds, including antibiotics. Seven LPS transport proteins (that is, LptA-LptG) form a trans-envelope protein complex responsible for the transport of LPS from the inner membrane to the outer membrane, the mechanism for which is poorly understood. Here we report the first crystal structure of the unique integral membrane LPS translocon LptD-LptE complex. LptD forms a novel 26-stranded ß-barrel, which is to our knowledge the largest ß-barrel reported so far. LptE adopts a roll-like structure located inside the barrel of LptD to form an unprecedented two-protein 'barrel and plug' architecture. The structure, molecular dynamics simulations and functional assays suggest that the hydrophilic O-antigen and the core oligosaccharide of the LPS may pass through the barrel and the lipid A of the LPS may be inserted into the outer leaflet of the outer membrane through a lateral opening between strands ß1 and ß26 of LptD. These findings not only help us to understand important aspects of bacterial outer membrane biogenesis, but also have significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Lipopolysaccharides/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Salmonella typhimurium/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Crystallography, X-Ray , Lipopolysaccharides/chemistry , Models, Molecular , Protein Binding , Protein Structure, Secondary , Salmonella typhimurium/cytology , Structure-Activity Relationship
8.
Toxicol Appl Pharmacol ; 345: 1-9, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29524504

ABSTRACT

BACKGROUND AND PURPOSE: Protein modification by small ubiquitin-like modifier (SUMO) plays a critical role in the pathogenesis of heart diseases. The present study was designed to determine whether ginkgolic acid (GA) as a SUMO-1 inhibitor exerts an inhibitory effect on cardiac fibrosis induced by myocardial infarction (MI). EXPERIMENTAL APPROACH: GA was delivered by osmotic pumps in MI mice. Masson staining, electron microscopy (EM) and echocardiography were used to assess cardiac fibrosis, ultrastructure and function. Expression of SUMO-1, PML, TGF-ß1 and Pin1 was measured with Western blot or Real-time PCR. Collagen content, cell viability and myofibroblast transformation were measured in neonatal mouse cardiac fibroblasts (NMCFs). Promyelocytic leukemia (PML) protein was over-expressed by plasmid transfection. KEY RESULTS: GA improved cardiac fibrosis and dysfunction, and decreased SUMO-1 expression in MI mice. GA (>20 µM) inhibited NMCF viability in a dose-dependent manner. Nontoxic GA (10 µM) restrained angiotensin II (Ang II)-induced myofibroblast transformation and collagen production. GA also inhibited expression of TGF-ß1 mRNA and protein in vitro and in vivo. GA suppressed PML SUMOylation and PML nuclear body (PML-NB) organization, and disrupted expression and recruitment of Pin1 (a positive regulator of TGF-ß1 mRNA), whereas over-expression of PML reversed that. CONCLUSIONS AND IMPLICATIONS: Inhibition of SUMO-1 by GA alleviated MI-induced heart dysfunction and fibrosis, and the SUMOylated PML/Pin1/TGF-ß1 pathway is crucial for GA-inhibited cardiac fibrosis.


Subject(s)
Myocardial Infarction/drug therapy , SUMO-1 Protein/antagonists & inhibitors , Salicylates/therapeutic use , Animals , Animals, Newborn , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Fibrosis/drug therapy , Fibrosis/metabolism , Fibrosis/pathology , Male , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , SUMO-1 Protein/metabolism , Salicylates/pharmacology , Stroke Volume/drug effects , Stroke Volume/physiology
9.
Mol Ther ; 25(3): 666-678, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28143738

ABSTRACT

The promyelocytic leukemia protein (PML) is essential in the assembly of dynamic subnuclear structures called PML nuclear bodies (PML-NBs), which are involved in regulating diverse cellular functions. However, the possibility of PML being involved in cardiac disease has not been examined. In mice undergoing transverse aortic constriction (TAC) and arsenic trioxide (ATO) injection, transforming growth factor ß1 (TGF-ß1) was upregulated along with dynamic alteration of PML SUMOylation. In cultured neonatal mouse cardiac fibroblasts (NMCFs), ATO, angiotensin II (Ang II), and fetal bovine serum (FBS) significantly triggered PML SUMOylation and the assembly of PML-NBs. Inhibition of SUMOylated PML by silencing UBC9, the unique SUMO E2-conjugating enzyme, reduced the development of cardiac fibrosis and partially improved cardiac function in TAC mice. In contrast, enhancing SUMOylated PML accumulation, by silencing RNF4, a poly-SUMO-specific E3 ubiquitin ligase, accelerated the induction of cardiac fibrosis and promoted cardiac function injury. PML colocalized with Pin1 (a positive regulator for TGF-ß1 mRNA expression in PML-NBs) and increased TGF-ß1 activity. These findings suggest that the UBC9/PML/RNF4 axis plays a critical role as an important SUMO pathway in cardiac fibrosis. Modulating the protein levels of the pathway provides an attractive therapeutic target for the treatment of cardiac fibrosis and heart failure.


Subject(s)
Gene Silencing , Myocardium/metabolism , Myocardium/pathology , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein/metabolism , Transcription Factors/genetics , Ubiquitin-Conjugating Enzymes/genetics , Angiotensin II/pharmacology , Animals , Arsenic Trioxide , Arsenicals/pharmacology , Collagen/biosynthesis , Fibrosis , Mice , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Oxides/pharmacology , Protein Binding , Sumoylation , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Ubiquitin-Protein Ligases
10.
Biochem J ; 474(23): 3951-3961, 2017 11 21.
Article in English | MEDLINE | ID: mdl-28974626

ABSTRACT

Outer membrane (OM) ß-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli, the ß-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel ß1C-ß6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the ß16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique ß16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA ß1C-ß6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Periplasm/metabolism , Plasmids/chemistry , Salmonella typhimurium/metabolism , Amino Acid Motifs , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Models, Molecular , Mutation , Periplasm/genetics , Periplasm/ultrastructure , Plasmids/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/ultrastructure
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1461-1467, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28821406

ABSTRACT

Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans­envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB2FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans­periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/metabolism , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Bacterial Outer Membrane Proteins/chemistry , Biological Transport, Active , Hydrolysis , Lipopolysaccharides/chemistry , Models, Biological , Models, Molecular , Protein Conformation , Structure-Activity Relationship
12.
J Virol ; 89(13): 6595-607, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25878103

ABSTRACT

UNLABELLED: Arenaviruses cause severe hemorrhagic fever diseases in humans, and there are limited preventative and therapeutic measures against these diseases. Previous structural and functional analyses of arenavirus nucleoproteins (NPs) revealed a conserved DEDDH exoribonuclease (RNase) domain that is important for type I interferon (IFN) suppression, but the biological roles of the NP RNase in viral replication and host immune suppression have not been well characterized. Infection of guinea pigs with Pichinde virus (PICV), a prototype arenavirus, can serve as a surrogate small animal model for arenavirus hemorrhagic fevers. In this report, we show that mutation of each of the five RNase catalytic residues of PICV NP diminishes the IFN suppression activity and slightly reduces the viral RNA replication activity. Recombinant PICVs with RNase catalytic mutations can induce high levels of IFNs and barely grow in IFN-competent A549 cells, in sharp contrast to the wild-type (WT) virus, while in IFN-deficient Vero cells, both WT and mutant viruses can replicate at relatively high levels. Upon infection of guinea pigs, the RNase mutant viruses stimulate strong IFN responses, fail to replicate productively, and can become WT revertants. Serial passages of the RNase mutants in vitro can also generate WT revertants. Thus, the NP RNase function is essential for the innate immune suppression that allows the establishment of a productive early viral infection, and it may be partly involved in the process of viral RNA replication. IMPORTANCE: Arenaviruses, such as Lassa, Lujo, and Machupo viruses, can cause severe and deadly hemorrhagic fever diseases in humans, and there are limited preventative and treatment options against these diseases. Development of broad-spectrum antiviral drugs depends on a better mechanistic understanding of the conserved arenavirus proteins in viral infection. The nucleoprotein (NPs) of all arenaviruses carry a unique exoribonuclease (RNase) domain that has been shown to be critical for the suppression of type I interferons. However, the functional roles of the NP RNase in arenavirus replication and host immune suppression have not been characterized systematically. Using a prototype arenavirus, Pichinde virus (PICV), we characterized the viral growth and innate immune suppression of recombinant RNase-defective mutants in both cell culture and guinea pig models. Our study suggests that the NP RNase plays an essential role in the suppression of host innate immunity, and possibly in viral RNA replication, and that it can serve as a novel target for developing antiviral drugs against arenavirus pathogens.


Subject(s)
Exoribonucleases/metabolism , Host-Pathogen Interactions , Immune Evasion , Nucleoproteins/metabolism , Pichinde virus/enzymology , Pichinde virus/physiology , Virus Replication , Amino Acid Motifs , Amino Acid Substitution , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Cell Line , DNA Mutational Analysis , Disease Models, Animal , Exoribonucleases/genetics , Guinea Pigs , Humans , Male , Nucleoproteins/genetics , Pichinde virus/genetics , Pichinde virus/immunology
13.
Nature ; 468(7325): 779-83, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21085117

ABSTRACT

Lassa virus, the causative agent of Lassa fever, causes thousands of deaths annually and is a biological threat agent, for which there is no vaccine and limited therapy. The nucleoprotein (NP) of Lassa virus has essential roles in viral RNA synthesis and immune suppression, the molecular mechanisms of which are poorly understood. Here we report the crystal structure of Lassa virus NP at 1.80 Å resolution, which reveals amino (N)- and carboxy (C)-terminal domains with structures unlike any of the reported viral NPs. The N domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription, whereas the C domain contains 3'-5' exoribonuclease activity involved in suppressing interferon induction. To our knowledge this is the first X-ray crystal structure solved for an arenaviral NP, which reveals its unexpected functions and indicates unique mechanisms in cap binding and immune evasion. These findings provide great potential for vaccine and drug development.


Subject(s)
Immune Evasion/immunology , Lassa virus/chemistry , Lassa virus/immunology , Nucleoproteins/chemistry , Nucleoproteins/metabolism , RNA Caps/metabolism , Viral Proteins/chemistry , Crystallography, X-Ray , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Interferons/biosynthesis , Interferons/immunology , Lassa virus/genetics , Models, Molecular , Nucleoproteins/genetics , Nucleoproteins/immunology , Protein Structure, Tertiary , RNA Cap Analogs/chemistry , RNA Cap Analogs/metabolism , RNA Caps/chemistry , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
14.
RNA ; 19(8): 1129-36, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23798666

ABSTRACT

Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses.


Subject(s)
Nucleocapsid Proteins/chemistry , Orthobunyavirus/chemistry , RNA, Viral/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Microscopy, Electron , Models, Molecular , Nucleic Acid Conformation , Nucleocapsid Proteins/ultrastructure , Orthobunyavirus/pathogenicity , Orthobunyavirus/ultrastructure , Protein Structure, Quaternary , Static Electricity
15.
J Biol Chem ; 288(23): 16949-16959, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23615902

ABSTRACT

A hallmark of severe Lassa fever is the generalized immune suppression, the mechanism of which is poorly understood. Lassa virus (LASV) nucleoprotein (NP) is the only known 3'-5' exoribonuclease that can suppress type I interferon (IFN) production possibly by degrading immune-stimulatory RNAs. How this unique enzymatic activity of LASV NP recognizes and processes RNA substrates is unknown. We provide an atomic view of a catalytically active exoribonuclease domain of LASV NP (LASV NP-C) in the process of degrading a 5' triphosphate double-stranded (ds) RNA substrate, a typical pathogen-associated molecular pattern molecule, to induce type I IFN production. Additionally, we provide for the first time a high-resolution crystal structure of an active exoribonuclease domain of Tacaribe arenavirus (TCRV) NP. Coupled with the in vitro enzymatic and cell-based interferon suppression assays, these structural analyses strongly support a unified model of an exoribonuclease-dependent IFN suppression mechanism shared by all known arenaviruses. New knowledge learned from these studies should aid the development of therapeutics against pathogenic arenaviruses that can infect hundreds of thousands of individuals and kill thousands annually.


Subject(s)
Arenaviruses, New World , Exoribonucleases , Immune Tolerance , Interferon Type I , Lassa Fever , Lassa virus , Nucleoproteins , RNA, Double-Stranded , RNA, Viral , Viral Proteins , Arenaviruses, New World/enzymology , Arenaviruses, New World/genetics , Arenaviruses, New World/immunology , Cell Line , Crystallography, X-Ray , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/immunology , Exoribonucleases/metabolism , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Lassa Fever/genetics , Lassa Fever/immunology , Lassa Fever/metabolism , Lassa virus/enzymology , Lassa virus/genetics , Lassa virus/immunology , Nucleoproteins/chemistry , Nucleoproteins/genetics , Nucleoproteins/immunology , Nucleoproteins/metabolism , Protein Structure, Tertiary , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/immunology , RNA, Viral/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
16.
Biochem Biophys Res Commun ; 452(3): 443-9, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25172661

ABSTRACT

Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg(2+), which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB's ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Lipopolysaccharides/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Conserved Sequence , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Lipopolysaccharides/metabolism , Models, Molecular , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
J Virol ; 87(10): 5593-601, 2013 May.
Article in English | MEDLINE | ID: mdl-23468499

ABSTRACT

Schmallenberg virus (SBV), a newly emerged orthobunyavirus (family Bunyaviridae), has spread rapidly across Europe and has caused congenital abnormalities in the offspring of cattle, sheep, and goats. Like other orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that encodes four structural and two nonstructural proteins. The nucleoprotein (N) encapsidates the three viral genomic RNA segments and plays a crucial role in viral RNA transcription and replication. Here we report the crystal structure of the bacterially expressed SBV nucleoprotein to a 3.06-Å resolution. The protomer is composed of two domains (N-terminal and C-terminal domains) with flexible N-terminal and C-terminal arms. The N protein has a novel fold and forms a central positively charged cleft for genomic RNA binding. The nucleoprotein purified under native conditions forms a tetramer, while the nucleoprotein obtained following denaturation and refolding forms a hexamer. Our structural and functional analyses demonstrate that both N-terminal and C-terminal arms are involved in N-N interaction and oligomerization and play an essential role in viral RNA synthesis, suggesting a novel mechanism for viral RNA encapsidation and transcription.


Subject(s)
Nucleoproteins/chemistry , Orthobunyavirus/chemistry , Orthobunyavirus/physiology , Virus Assembly , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Multimerization , RNA-Binding Proteins/chemistry , Sequence Alignment , Virus Replication
18.
Front Microbiol ; 15: 1447485, 2024.
Article in English | MEDLINE | ID: mdl-39211315

ABSTRACT

Introduction: Developing antibiotic adjuvants is an effective strategy to combat antimicrobial resistance (AMR). The envelope of Gram-negative bacteria (GNB) is a barrier to prevent the entry of antibiotics, making it an attractive target for novel antibiotic and adjuvant development. Methods and Results: In this study, we identified Caspofungin acetate (CAS) as an antibiotic adjuvant against GNB in the repurposing screen of 3,158 FDA-approved drugs. Checkerboard assays suggested that CAS could enhance the antimicrobial activity of rifampin or colistin against various GNB strains in vitro, Moreover, Galleria mellonella larvae infection model also indicated that CAS significantly potentiated the efficacy of rifampin against multidrug-resistant Escherichia coli 72 strain in vivo. Most importantly, resistance development assay showed that CAS was less susceptible to accelerating the resistance development of drug-sensitive strain E. coli MG1655. Functional studies and RNA-seq analysis confirmed that the mechanisms by which CAS enhanced the antimicrobial activities of antibiotics were involved in permeabilizing the bacterial cell envelope, disrupting proton motive force and inhibiting bacterial biofilm formation. Additionally, it has been found that PgaC is the CAS target and enzymatic assay has confirmed the inhibition activity. Discussion: Our results illustrate the feasibility of CAS as an antibiotic adjuvant against GNB, which is an alternative strategy of anti-infection.

19.
Sci Adv ; 10(34): eadl1150, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39167653

ABSTRACT

An outbreak of mpox virus in May 2022 has spread over 110 nonpandemic regions in the world, posing a great threat to global health. Mpox virus E5, a helicase-primase, plays an essential role in DNA replication, but the molecular mechanisms are elusive. Here, we report seven structures of mpox virus E5 in a double hexamer (DH) and six in single hexamer in different conformations, indicating a rotation mechanism for helicase and a coupling action for primase. The DH is formed through the interface of zinc-binding domains, and the central channel density indicates potential double-stranded DNA (dsDNA), which helps to identify dsDNA binding residues Arg249, Lys286, Lys315, and Lys317. Our work is important not only for understanding poxviral DNA replication but also for the development of novel therapeutics for serious poxviral infections including smallpox virus and mpox virus.


Subject(s)
DNA Helicases , DNA Primase , DNA Primase/metabolism , DNA Primase/chemistry , DNA Helicases/metabolism , DNA Helicases/chemistry , Models, Molecular , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Protein Multimerization , DNA Replication , Protein Binding , DNA, Viral/metabolism
20.
Int J Biol Macromol ; 270(Pt 2): 132231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735603

ABSTRACT

Mpox virus has wildly spread over 108 non-endemic regions in the world since May 2022. DNA replication of mpox is performed by DNA polymerase machinery F8-A22-E4, which is known as a great drug target. Brincidofovir and cidofovir are reported to have broad-spectrum antiviral activity against poxviruses, including mpox virus in animal models. However, the molecular mechanism is not understood. Here we report cryogenic electron microscopy structures of mpox viral F8-A22-E4 in complex with a DNA duplex, or dCTP and the DNA duplex, or cidofovir diphosphate and the DNA duplex at resolution of 3.22, 2.98 and 2.79 Å, respectively. Our structural work and DNA replication inhibition assays reveal that cidofovir diphosphate is located at the dCTP binding position with a different conformation to compete with dCTP to incorporate into the DNA and inhibit DNA synthesis. Conformation of both F8-A22-E4 and DNA is changed from the pre-dNTP binding state to DNA synthesizing state after dCTP or cidofovir diphosphate is bound, suggesting a coupling mechanism. This work provides the structural basis of DNA synthesis inhibition by brincidofovir and cidofovir, providing a rational strategy for new therapeutical development for mpox virus and other pox viruses.


Subject(s)
Antiviral Agents , Cidofovir , Cytosine , DNA Replication , Organophosphonates , Virus Replication , Cidofovir/pharmacology , Cidofovir/chemistry , Organophosphonates/pharmacology , Organophosphonates/chemistry , Cytosine/analogs & derivatives , Cytosine/pharmacology , Cytosine/chemistry , DNA Replication/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Virus Replication/drug effects , DNA, Viral , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL