Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Plant Microbe Interact ; 37(1): 62-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37889205

ABSTRACT

Microtubule-associated protein 65-1 (MAP65-1) protein plays an essential role in plant cellular dynamics through impacting stabilization of the cytoskeleton by serving as a crosslinker of microtubules. The role of MAP65-1 in plants has been associated with phenotypic outcomes in response to various environmental stresses. The Arabidopsis MAP65-1 (AtMAP65-1) is a known virulence target of plant bacterial pathogens and is thus a component of plant immunity. Soybean events were generated that carry transgenic alleles for both AtMAP65-1 and GmMAP65-1, the soybean AtMAP65-1 homolog, under control of cauliflower mosaic virus 35S promoter. Both AtMAP65-1 and GmMAP65-1 transgenic soybeans are more resistant to challenges by the soybean bacterial pathogen Pseudomonas syringae pv. glycinea and the oomycete pathogen Phytophthora sojae, but not the soybean cyst nematode, Heterodera glycines. Soybean plants expressing AtMAP65-1 and GmMAP65-1 also display a tolerance to the herbicide oryzalin, which has a mode of action to destabilize microtubules. In addition, GmMAP65-1-expressing soybean plants show reduced cytosol ion leakage under freezing conditions, hinting that ectopic expression of GmMAP65-1 may enhance cold tolerance in soybean. Taken together, overexpression of AtMAP65-1 and GmMAP65-1 confers tolerance of soybean plants to various biotic and abiotic stresses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Glycine max/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Microtubules/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant
2.
Mol Plant Microbe Interact ; 35(11): 964-976, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35881867

ABSTRACT

The discovery of the enzymatic activity of the toll/interleukin-1 receptor (TIR) domain protein SARM1 five years ago preceded a flood of discoveries regarding the nucleotide substrates and products of TIR domains in plants, animals, bacteria, and archaea. These discoveries into the activity of TIR domains coincide with major advances in understanding the structure and mechanisms of NOD-like receptors and the mutual dependence of pattern recognition receptor- and effector-triggered immunity (PTI and ETI, respectively) in plants. It is quickly becoming clear that TIR domains and TIR-produced nucleotides are ancestral signaling molecules that modulate immunity and that their activity is closely associated with Ca2+ signaling. TIR domain research now bridges the separate disciplines of molecular plant- and animal-microbe interactions, neurology, and prokaryotic immunity. A cohesive framework for understanding the role of enzymatic TIR domains in diverse organisms will help unite the research of these disparate fields. Here, we review known products of TIR domains in plants, animals, bacteria, and archaea and use context gained from animal and prokaryotic TIR domain systems to present a model for TIR domains, nucleotides, and Ca2+ at the intersection of PTI and ETI in plant immunity. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Nucleotides , Receptors, Interleukin-1 , Animals , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Plant Immunity/genetics , NLR Proteins , Signal Transduction , Archaea/genetics
3.
New Phytol ; 233(2): 890-904, 2022 01.
Article in English | MEDLINE | ID: mdl-34657283

ABSTRACT

The Pseudomonas syringae DC3000 type III effector HopAM1 suppresses plant immunity and contains a Toll/interleukin-1 receptor (TIR) domain homologous to immunity-related TIR domains of plant nucleotide-binding leucine-rich repeat receptors that hydrolyze nicotinamide adenine dinucleotide (NAD+ ) and activate immunity. In vitro and in vivo assays were conducted to determine if HopAM1 hydrolyzes NAD+ and if the activity is essential for HopAM1's suppression of plant immunity and contribution to virulence. HPLC and LC-MS were utilized to analyze metabolites produced from NAD+ by HopAM1 in vitro and in both yeast and plants. Agrobacterium-mediated transient expression and in planta inoculation assays were performed to determine HopAM1's intrinsic enzymatic activity and virulence contribution. HopAM1 is catalytically active and hydrolyzes NAD+ to produce nicotinamide and a novel cADPR variant (v2-cADPR). Expression of HopAM1 triggers cell death in yeast and plants dependent on the putative catalytic residue glutamic acid 191 (E191) within the TIR domain. Furthermore, HopAM1's E191 residue is required to suppress both pattern-triggered immunity and effector-triggered immunity and promote P. syringae virulence. HopAM1 manipulates endogenous NAD+ to produce v2-cADPR and promote pathogenesis. This work suggests that HopAM1's TIR domain possesses different catalytic specificity than other TIR domain-containing NAD+ hydrolases and that pathogens exploit this activity to sabotage NAD+ metabolism for immune suppression and virulence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , NAD/metabolism , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Receptors, Interleukin-1/metabolism , Virulence
4.
Science ; 377(6614): eadc8969, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36048923

ABSTRACT

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Subject(s)
ADP-ribosyl Cyclase , Adaptor Proteins, Vesicular Transport , Bacteria , Bacterial Proteins , Cyclic ADP-Ribose , Plant Immunity , Toll-Like Receptors , ADP-ribosyl Cyclase/chemistry , ADP-ribosyl Cyclase/genetics , ADP-ribosyl Cyclase/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Bacteria/immunology , Bacteria/virology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic ADP-Ribose/biosynthesis , Cyclic ADP-Ribose/chemistry , Isomerism , NAD/metabolism , Protein Domains , Receptors, Interleukin-1/chemistry , Signal Transduction , Toll-Like Receptors/chemistry , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Tryptophan/chemistry , Tryptophan/genetics
SELECTION OF CITATIONS
SEARCH DETAIL