Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Proc Natl Acad Sci U S A ; 114(9): E1707-E1716, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28137843

ABSTRACT

AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury.


Subject(s)
Nerve Regeneration/physiology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Remyelination/physiology , alpha-Crystallin B Chain/metabolism , Animals , Axons/metabolism , Axons/physiology , Female , Heat-Shock Proteins/metabolism , Mice , Myelin Sheath/metabolism , Myelin Sheath/physiology , Peripheral Nervous System/metabolism , Peripheral Nervous System/physiopathology , Receptor, ErbB-2/metabolism , Schwann Cells/physiology
2.
Molecules ; 25(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532112

ABSTRACT

An all-diamond photonic circuit was implemented by integrating a diamond microsphere with a femtosecond-laser-written bulk diamond waveguide. The near surface waveguide was fabricated by exploiting the Type II fabrication method to achieve stress-induced waveguiding. Transverse electrically and transverse magnetically polarized light from a tunable laser operating in the near-infrared region was injected into the diamond waveguide, which when coupled to the diamond microsphere showed whispering-gallery modes with a spacing of 0.33 nm and high-quality factors of 105. By carefully engineering these high-quality factor resonances, and further exploiting the properties of existing nitrogen-vacancy centers in diamond microspheres and diamond waveguides in such configurations, it should be possible to realize filtering, sensing and nonlinear optical applications in integrated diamond photonics.


Subject(s)
Diamond/chemistry , Equipment Design , Lasers , Microspheres , Optics and Photonics , Light , Transducers
3.
Opt Express ; 26(2): 702-710, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401952

ABSTRACT

Cognitive photonic networks are researched to efficiently solve computationally hard problems. Flexible fabrication techniques for the implementation of such networks into compact and scalable chips are desirable for the study of new optical computing schemes and algorithm optimization. Here we demonstrate a femtosecond laser-written optical oracle based on cascaded directional couplers in glass, for the solution of the Hamiltonian path problem. By interrogating the integrated photonic chip with ultrashort laser pulses, we were able to distinguish the different paths traveled by light pulses, and thus infer the existence or the absence of the Hamiltonian path in the network by using an optical correlator. This work proves that graph theory problems may be easily implemented in integrated photonic networks, down scaling the net size and speeding up execution times.

4.
Appl Opt ; 57(14): 3687-3692, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29791328

ABSTRACT

We report on the coupling of whispering gallery modes in a 500-µm-radius silicon microsphere to a femtosecond-laser-inscribed glass optical waveguide. The shallow glass waveguide with a large mode field diameter in the near-infrared is written at a depth of 25 µm below the glass surface, resulting in a high excitation impact parameter of 525 µm for the microsphere. The excited whispering gallery modes of the silicon microsphere have quality factors of approximately 105 in the 90° elastic scattering and 0° transmission. Integration of such spherical silicon microresonators on femtosecond-laser-inscribed glass waveguides is promising for photonic communication, computation, and sensing applications.

5.
Opt Lett ; 41(8): 1712-5, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27082326

ABSTRACT

An optical realization of the damped quantum oscillator, based on transverse light dynamics in an optical resonator with slowly-moving mirrors, is theoretically suggested. The optical resonator setting provides a simple implementation of the time-dependent Caldirola-Kanai Hamiltonian of the dissipative quantum oscillator and enables the visualization of the effects of damped oscillations in the classical (ray optics) limit and wave packet collapse in the quantum (wave optics) regime.

6.
Langmuir ; 29(1): 426-31, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23205584

ABSTRACT

Two-photon polymerization technology has been used to fabricate submicrometer three-dimensional (3D) structures using a new polyfunctional perfluoropolyether-based resist, which is a polymer intrinsically hydrophobic and chemically resistant. The fluorinated resist was designed and synthesized in this work and successfully employed to fabricate woodpile structures in various experimental conditions. This is the first demonstration of the capability to fabricate hydrophobic and chemically resistant 3D structures with submicrometer resolution and arbitrary geometry.

7.
ACS Photonics ; 9(10): 3366-3373, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36281332

ABSTRACT

Modifying light fields at the single-photon level is a key challenge for upcoming quantum technologies and can be realized in a scalable manner through integrated quantum photonics. Laser-written diamond photonics offers 3D fabrication capabilities and large mode-field diameters matched to fiber optic technology, though limiting the cooperativity at the single-emitter level. To realize large coupling efficiencies, we combine excitation of single shallow-implanted silicon vacancy centers via high numerical aperture optics with detection assisted by laser-written type-II waveguides. We demonstrate single-emitter extinction measurements with a cooperativity of 0.0050 and a relative beta factor of 13%. The transmission of resonant photons reveals single-photon subtraction from a quasi-coherent field resulting in super-Poissonian light statistics. Our architecture enables light field engineering in an integrated design on the single quantum level although the intrinsic cooperativity is low. Laser-written structures can be fabricated in three dimensions and with a natural connectivity to optical fiber arrays.

8.
JMIR Med Educ ; 8(1): e33390, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35099397

ABSTRACT

BACKGROUND: Artificial intelligence (AI) is no longer a futuristic concept; it is increasingly being integrated into health care. As studies on attitudes toward AI have primarily focused on physicians, there is a need to assess the perspectives of students across health care disciplines to inform future curriculum development. OBJECTIVE: This study aims to explore and identify gaps in the knowledge that Canadian health care students have regarding AI, capture how health care students in different fields differ in their knowledge and perspectives on AI, and present student-identified ways that AI literacy may be incorporated into the health care curriculum. METHODS: The survey was developed from a narrative literature review of topics in attitudinal surveys on AI. The final survey comprised 15 items, including multiple-choice questions, pick-group-rank questions, 11-point Likert scale items, slider scale questions, and narrative questions. We used snowball and convenience sampling methods by distributing an email with a description and a link to the web-based survey to representatives from 18 Canadian schools. RESULTS: A total of 2167 students across 10 different health professions from 18 universities across Canada responded to the survey. Overall, 78.77% (1707/2167) predicted that AI technology would affect their careers within the coming decade and 74.5% (1595/2167) reported a positive outlook toward the emerging role of AI in their respective fields. Attitudes toward AI varied by discipline. Students, even those opposed to AI, identified the need to incorporate a basic understanding of AI into their curricula. CONCLUSIONS: We performed a nationwide survey of health care students across 10 different health professions in Canada. The findings would inform student-identified topics within AI and their preferred delivery formats, which would advance education across different health care professions.

9.
Opt Express ; 19(12): 11597-604, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21716392

ABSTRACT

We report on the fabrication of binary Fresnel lenses by femtosecond laser surface ablation of poly(methyl methacrylate) (PMMA) substrates. Tight focusing of the laser pulses produced a minimum ablated feature size of 600 nm, enabling the creation of lenses with numerical apertures as high as 0.5 and focal lengths ranging from 500 µm to 5 mm. A precise control of the ablation depth allowed the achievement of a 30% focusing efficiency, close to the maximum theoretical value for this kind of lenses.

10.
Langmuir ; 27(13): 8391-5, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21631121

ABSTRACT

We demonstrate that hydrophobic areas formed by femtosecond laser irradiation on poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymer substrates can be faithfully replicated on samples of the same material via a solvent-resistant perfluoropolyether (PFPE) elastomer mold. The replicated PMMA and PS samples show nearly identical micro-nanoscale topography and hydrophobic wetting characteristics as the laser-patterned master substrates. This work combines the femtosecond laser capability of spatially tailoring the wettability with a high-resolution parallel replication method, offering the potential for the efficient production of microfluidic devices with selectively tailored flow behavior.


Subject(s)
Lasers , Nanotechnology , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Ethers/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Solvents/chemistry , Surface Properties , Time Factors
11.
Micromachines (Basel) ; 12(4)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919568

ABSTRACT

Micro-drilling transparent dielectric materials by using non-diffracting beams impinging orthogonally to the sample can be performed without scanning the beam position along the sample thickness. In this work, the laser micromachining process, based on the combination of picosecond pulsed Bessel beams with the trepanning technique, is applied to different transparent materials. We show the possibility to create through-apertures with diameter on the order of tens of micrometers, on dielectric samples with different thermal and mechanical characteristics as well as different thicknesses ranging from two hundred to five hundred micrometers. Advantages and drawbacks of the application of this technique to different materials such as glass, polymer, or diamond are highlighted by analyzing the features, the morphology, and the aspect-ratio of the through-holes generated. Alternative Bessel beam drilling configurations, and the possibility of optimization of the quality of the aperture at the output sample/air interface is also discussed in the case of glass.

12.
Micromachines (Basel) ; 12(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065403

ABSTRACT

High spatial frequency laser induced periodic surface structure (HSFL) morphology induced by femtosecond laser with 230 fs pulse duration, 250 kHz repetition rate at 1030 nm wavelength on CVD diamond surface is investigated and discussed. The spatial modification was characterized and analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and 2D-Fast Fourier Transform (2D-FFT). We studied the effect of pulse number and laser power on the spatial development of nanostructures, and also deduced the impact of thermal accumulation effect on their morphology. A generalized plasmonic model has been used to follow the optical evolution of the irradiated surface and to determine the periodic value of the nanostructures. We suggest that non-thermal melting and plasmonic excitation are the main processes responsible for the formation of HSFL-type nanostructures.

13.
eNeuro ; 7(4)2020.
Article in English | MEDLINE | ID: mdl-32680835

ABSTRACT

Spinal cord injury and peripheral nerve injuries are traumatic events that greatly impact quality of life. One factor that is being explored throughout patient care is the idea of diet and the role it has on patient outcomes. But the effects of diet following neurotrauma need to be carefully explored in animal models to ensure that they have beneficial effects. The ketogenic diet provides sufficient daily caloric requirements while being potentially neuroprotective and analgesic. In this study, animals were fed a high-fat, low-carbohydrate diet that led to a high concentration of blood ketone that was sustained for as long as the animals were on the diet. Mice fed a ketogenic diet had significantly lower levels of tyrosine and tryptophan, but the levels of other monoamines within the spinal cord remained similar to those of control mice. Mice were fed a standard or ketogenic diet for 7 d before and 28 d following the injury. Our results show that mice hemisected over the T10-T11 vertebrae showed no beneficial effects of being on a ketogenic diet over a 28 d recovery period. Similarly, ligation of the common peroneal and tibial nerve showed no differences between mice fed normal or ketogenic diets. Tests included von Frey, open field, and ladder-rung crossing. We add to existing literature showing protective effects of the ketogenic diet in forelimb injuries by focusing on neurotrauma in the hindlimbs. The results suggest that ketogenic diets need to be assessed based on the type and location of neurotrauma.


Subject(s)
Diet, Ketogenic , Spinal Cord Injuries , Animals , Disease Models, Animal , Mice , Quality of Life
14.
Front Aging Neurosci ; 12: 174, 2020.
Article in English | MEDLINE | ID: mdl-32595489

ABSTRACT

The regenerative capacity of injured peripheral nerves is diminished with aging. To identify factors that contribute to this impairment, we compared the immune cell response in young vs. aged animals following nerve injury. First, we confirmed that macrophage accumulation is delayed in aged injured nerves which is due to defects in monocyte migration as a result of defects in site-specific recruitment signals in the aged nerve. Interestingly, impairment in both macrophage accumulation and functional recovery could be overcome by transplanting bone marrow from aged animals into young mice. That is, upon exposure to a youthful environment, monocytes/macrophages originating from the aged bone marrow behaved similarly to young cells. Transcriptional profiling of aged macrophages following nerve injury revealed that both pro- and anti-inflammatory genes were largely downregulated in aged compared to young macrophages. One ligand of particular interest was macrophage-associated secreted protein (MCP1), which exhibited a potent role in regulating aged axonal regrowth in vitro. Given that macrophage-derived MCP1 is significantly diminished in the aged injured nerve, our data suggest that age-associated defects in MCP1 signaling could contribute to the regenerative deficits that occur in the aged nervous system.

15.
Sci Rep ; 10(1): 16429, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009442

ABSTRACT

Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.


Subject(s)
Mammals/metabolism , Receptors, Dopamine/metabolism , Spinal Cord/metabolism , Animals , Corpus Striatum/metabolism , Dopamine/metabolism , Male , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/metabolism
16.
Opt Express ; 16(18): 14015-23, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18773012

ABSTRACT

A single-step fast-writing method of burst ultrafast laser modification was applied to form a mesh network of multi-wavelength Bragg grating waveguides in bulk fused silica glass. Strain-optic and thermo-optic responses of the laser-written internal sensors are reported for the first time. A dual planar layout provided independent temperature- and strain-compensated characterization of temperature and strain distribution with coarse spatial resolution. The grating responses were thermally stable to 500 masculineC. To our best knowledge, the grating network represents the first demonstration of 3D distributed optical sensing network in a bulk transparent medium. Such 3D grating networks open new directions for strain and temperature sensing in optical circuits, optofluidic, MEMS or lab-on-a-chip microsystems, actuators, and windows and other large display or civil structures.


Subject(s)
Glass/chemistry , Refractometry/instrumentation , Silicon Dioxide/chemistry , Transducers , Elasticity , Equipment Design , Equipment Failure Analysis , Glass/radiation effects , Lasers , Silicon Dioxide/radiation effects , Stress, Mechanical , Temperature
17.
Opt Express ; 16(15): 11470-80, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18648467

ABSTRACT

A femtosecond fiber laser was applied to fabricate broadband directional couplers inside bulk glass for general power splitting application in the 1250 to 1650-nm wavelength telecom spectrum. The broadband response was optimized over the 400-nm bandwidth by tailoring the coupling strength and the waveguide interaction length to balance the differing wavelength dependence of the straight interaction and bent transition regions. High spatial finesse of the femtosecond-laser writing technique enabled close placement (approxiamtely 6 microm) of adjacent waveguides that underpinned the wavelength-flattened broadband response at any coupling ratio in the 0% to 100% range. The spectral responses were well-represented by coupled mode theory, permitting simple design and implementation of broadband couplers for bulk 3D optical circuit integration.


Subject(s)
Computer-Aided Design , Glass/chemistry , Lasers , Manufactured Materials/radiation effects , Models, Theoretical , Optics and Photonics/instrumentation , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Materials Testing , Scattering, Radiation
18.
Opt Express ; 16(13): 9443-58, 2008 Jun 23.
Article in English | MEDLINE | ID: mdl-18575510

ABSTRACT

A variable (0.2 to 5 MHz) repetition rate femtosecond laser was applied to delineate the role of thermal diffusion and heat accumulation effects in forming low-loss optical waveguides in borosilicate glass across a broad range of laser exposure conditions. For the first time, a smooth transition from diffusion-only transport at 200 kHz repetition rate to strong heat accumulation effects at 0.5 to 2 MHz was observed and shown to drive significant variations in waveguide morphology, with rapidly increasing waveguide diameter that accurately followed a simple thermal diffusion model over all exposure variables tested. Amongst these strong thermal trends, a common exposure window of 200 mW average power and approximately 15-mm/s scan speed was discovered across the range of 200 kHz to 2 MHz repetition rates for minimizing insertion loss despite a 10-fold drop in laser pulse energy. Waveguide morphology and thermal modeling indicate that strong thermal diffusion effects at 200 kHz give way to a weak heat accumulation effect at approximately 1 microJ pulse energy for generating low loss waveguides, while stronger heat accumulation effects above 1-MHz repetition rate offered overall superior guiding. A comprehensive characterization of waveguide properties is presented for laser writing in the thermal diffusion and heat accumulation regimes. The waveguides are shown to be thermally stable up to 800 degrees C and can be written in a convenient 520 microm depth range with low spherical aberration.


Subject(s)
Glass/chemistry , Lasers , Models, Theoretical , Optics and Photonics/instrumentation , Silicates/chemistry , Computer Simulation , Equipment Design , Equipment Failure Analysis , Glass/radiation effects , Hot Temperature , Light , Scattering, Radiation , Silicates/radiation effects , Surface Properties
19.
eNeuro ; 5(5)2018.
Article in English | MEDLINE | ID: mdl-30417080

ABSTRACT

The role of orexin during development, and especially in terms of spinal cord function, is not well understood. It is for this reason that we focused on the network actions of orexin during the first week of development. We found that orexinergic fibers were present in the lumbar spinal cord of postnatal day 0 (P0) to P3 mice. The fibers were expressed mainly in the dorsal horn, but occasional fibers were observed in the ventral horn. Both orexin (OX) A and OXB increased the motoneurons (MNs) tonic neurogram discharge. However, only OXA was found to significantly increase spontaneous bursting activity and the frequency of fictive locomotor bursts. We show that OXA is able to act directly on MNs. To test the contribution of the recurrent MN collaterals, we blocked the nicotinic cholinergic drive and observed that OXA retained its ability to increase fictive locomotor activity. Additionally, we recorded neurograms from ventral lateral funiculi, where OXA had no effect on population discharge. These effects were also confirmed by recording from descending commissural interneurons via patch recordings. The loci of the effects of OXA were further investigated in a dorsal horn-removed preparation where OXA also shows an increase in the discharge from ventral root neurograms but no increase in the frequency of spontaneous or fictive locomotion burst activity. In summary, multiple lines of evidence from our work demonstrate the robust effects of orexins on spinal cord networks and MNs at the time of birth.


Subject(s)
Locomotion/drug effects , Motor Activity/drug effects , Motor Neurons/drug effects , Orexins/pharmacology , Synaptic Transmission/drug effects , Action Potentials/drug effects , Animals , Interneurons/drug effects , Interneurons/physiology , Mice, Inbred C57BL , Serotonin/metabolism , Spinal Cord/drug effects , Spinal Cord/physiology , Spinal Nerve Roots/drug effects , Synaptic Transmission/physiology
20.
Sci Rep ; 8(1): 14021, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30232362

ABSTRACT

We investigate the effect of ultrafast laser surface machining on a monocrystalline synthetic diamond sample by means of pulsed Bessel beams. We discuss the differences of the trench-like microstructures generated in various experimental conditions, by varying the beam cone angle, the energy and pulse duration, and we present a brief comparison of the results with those obtained with the same technique on a sapphire sample. In diamond, we obtain V-shaped trenches whose surface width varies with the cone angle, and which are featured by micrometer sized channels having depths in the range of 10-20 µm. By laser writing crossed trenches we are also able to create and tailor on the diamond surface pillar-like or tip-like microstructures potentially interesting for large surface functionalization, cells capturing and biosensing.

SELECTION OF CITATIONS
SEARCH DETAIL