Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Environ Health Res ; 34(2): 1034-1043, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36970877

ABSTRACT

Teucrium persicum Boiss. an Iranian endemic plant is used in Iranian traditional medicine. E-cadherin transmembrane protein participates in adherens junctions and is the main partner for ß-catenin protein. The GC-MS analysis was used to detect the chemical constituents of the methanolic extract. Its effects on the transcription of the E-cadherin encoding gene, cellular levels, and localization of E-cadherin protein in PC-3 cells were investigated. About 70 chemical constituents were identified. Indirect immunofluorescence microscopy and western blotting results revealed the restoration of E-cadherin protein at cell adhesion contact sites in cells treated with T. persicum extract. Gene expression studies revealed that the extract increased the transcription of the E-cadherin encoding gene in PC-3 cells. These results suggest that T. persicum extract may contain potent compounds that provide further support for the anticancer properties of T. persicum. Surely, detailed molecular investigations are needed to find the mechanism(s) behind these effects.


Subject(s)
Teucrium , Humans , Teucrium/chemistry , Teucrium/metabolism , PC-3 Cells , Iran , Cadherins/genetics , Cadherins/metabolism , Plant Extracts/pharmacology
2.
Avicenna J Phytomed ; 13(3): 316-327, 2023.
Article in English | MEDLINE | ID: mdl-37655001

ABSTRACT

Objective: Ferula gummosa Boiss is a well-known Iranian endemic plant that has been used in Iranian traditional medicine against various diseases. This study aimed to evaluate the antioxidant and cytotoxic capacity of F. gummosa gum on prostate cancer PC-3 cells. Materials and Methods: In this study, we evaluated the total phenolic and flavonoid contents, and antioxidant potentials of the gum. The MTT experiment was conducted to assess the cytotoxic potential of the gum on PC-3 cells. The clonogenic, micronucleus formation, and acridine orange/ethidium bromide staining methods were used to evaluate the survival and proliferation of PC-3 cells. DNA degradation and caspase 3/7 activity evaluations were used to assess apoptosis. The inhibitory effect on the migration of PC-3 cells was examined by in vitro wound-healing experiment. Results: Total phenolic and flavonoid contents, and antioxidant potential of the gum were 9.22 mg of gallic acid equivalent (GAE)/g, 3.6 mg of quercetin equivalents (QE) /g of the extract, and 13 µg/ml, respectively (compared to gallic acid and quercetin, respectively) (p<0.05). The IC50 value was 9.14 µg/ml for 48 hours (compared to non-treated cells) (p<0.01). The pattern of DNA degradation, and caspase 3/7 activity levels (compared to non-treated cells) (p<0.05) proposed decreased cell viability that may be due to apoptosis induction. Microscopic observations revealed nuclear condensation, a significant increase in the formation of micronuclei, and inhibition of forming colonies (compared to non-treated cells) (p<0.01) in PC-3 cells treated with 8 and 10 µg/ml of the gum. Wound-healing assessment showed the migration suppression potentials of the gum (compared to non-treated cells) (p<0.05). Conclusion: These results indicate that F. gummosa has considerable antioxidant and cytotoxic properties that can make it a good nominee for subsequent investigations.

SELECTION OF CITATIONS
SEARCH DETAIL