Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Proteome Res ; 18(12): 4197-4205, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31646870

ABSTRACT

The Human Proteome Project (HPP) has made great efforts to clarify the existing evidence of human proteins since 2012. However, according to the recent release of neXtProt (2019-1), approximately 10% of all human genes still have inadequate or no experimental evidence of their translation at the protein level. They were categorized as missing proteins (PE2-PE4). To further the goal of HPP, we developed a two-step bioinformatic strategy addressing the utilization of the SRMAtlas synthetic peptides corresponding to the missing proteins as an exclusive reference in order to explore their natural counterparts within GPM. In the first step, we searched the GPM for the non-nested SRMAtlas peptides corresponding to the missing proteins, taking under consideration only those detected via ≥2 non-nested unitypic/proteotypic peptides "Stranded peptides" with length ≥9 amino acids in the same proteomic study. As a result, 51 missing proteins were newly detected in 35 different proteomic studies. In the second step, we validated these newly detected missing proteins based on matching the spectra of their synthetic and natural peptides in SRMAtlas and GPM, respectively. The results showed that 23 of the missing proteins with ≥2 non-nested peptides were validated by careful spectral matching.


Subject(s)
Databases, Protein , Proteome , Proteomics/methods , Humans , Peptides/chemical synthesis , Protein Interaction Maps , Reproducibility of Results , Software
2.
J Proteome Res ; 16(12): 4403-4414, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28980472

ABSTRACT

In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10-4)% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.


Subject(s)
Data Mining/methods , Databases, Protein , Proteome/analysis , Computational Biology , Humans , Proteomics/methods , Tissue Distribution , Transcriptome
3.
Proteomics ; 16(1): 80-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26442468

ABSTRACT

Urine has evolved as one of the most important biofluids in clinical proteomics due to its noninvasive sampling and its stability. Yet, it is used in clinical diagnostics of several disorders by detecting changes in its components including urinary protein/polypeptide profile. Despite the fact that majority of proteins detected in urine are primarily originated from the urogenital (UG) tract, determining its precise source within the UG tract remains elusive. In this article, we performed a comprehensive analysis of ureter proteome to assemble the first unbiased ureter dataset. Next, we compared these data to urine, urinary exosome, and kidney mass spectrometric datasets. Our result concluded that among 2217 nonredundant ureter proteins, 751 protein candidates (33.8%) were detected in urine as urinary protein/polypeptide or exosomal protein. On the other hand, comparing ureter protein hits (48) that are not shown in corresponding databases to urinary bladder and prostate human protein atlas databases pinpointed 21 proteins that might be unique to ureter tissue. In conclusion, this finding offers future perspectives for possible identification of ureter disease-associated biomarkers such as ureter carcinoma. In addition, the ureter proteomic dataset published in this article will provide a valuable resource for researchers working in the field of urology and urine biomarker discovery. All MS data have been deposited in the ProteomeXchange with identifier PXD002620 (http://proteomecentral.proteomexchange.org/dataset/PXD002620).


Subject(s)
Proteome/analysis , Ureter/chemistry , Biomarkers/analysis , Databases, Protein , Exosomes/chemistry , Humans , Kidney/chemistry , Proteinuria/diagnosis , Proteomics , Urine/chemistry
4.
Anal Chem ; 87(16): 8481-8, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26168396

ABSTRACT

OFFGEL fractionation of mouse kidney protein lysate and its tryptic peptide digest has been examined in this study for better understanding the differences between protein and peptide fractionation methods and attaining maximum recruitment of this modern methodology for in-depth proteomic analysis. With the same initial protein/peptide load for both fractionation methods, protein OFFGEL fractionation showed a preponderance in terms of protein identification, fractionation efficiency, and focusing resolution, while peptide OFFGEL was better in recovery, number of peptide matches, and protein coverage. This result suggests that the protein fractionation method is more suitable for shotgun analysis while peptide fractionation suits well quantitative peptide analysis [isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tags (TMT)]. Taken together, utilization of the advantages of both fractionation approaches could be attained by coupling both methods to be applied on complex biological tissue. A typical result is shown in this article by identification of 8262 confident proteins of whole mouse kidney under stringent condition. We therefore consider OFFGEL fractionation as an effective and efficient addition to both label-free and quantitative label proteomics workflow.


Subject(s)
Peptides/analysis , Proteins/analysis , Proteomics , Animals , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Electrophoresis, Polyacrylamide Gel , Isoelectric Focusing , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Peptides/isolation & purification , Peptides/metabolism , Proteins/isolation & purification , Proteins/metabolism , Quinolines/chemistry , Tandem Mass Spectrometry , Trypsin/metabolism
5.
Proteomes ; 12(3)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39051237

ABSTRACT

Examining the composition of the typical urinary peptidome and identifying the enzymes responsible for its formation holds significant importance, as it mirrors the normal physiological state of the human body. Any deviation from this normal profile could serve as an indicator of pathological processes occurring in vivo. Consequently, this study focuses on characterizing the normal urinary peptidome and investigating the various catalytic enzymes that are involved in generating these native peptides in urine. Our findings reveal that 1503 endogenous peptides, corresponding to 436 precursor proteins, were consistently identified robustly in at least 10 samples out of a total of 19 samples. Notably, the liver and kidneys exhibited the highest number of tissue-enriched or enhanced genes in the analyzed urinary peptidome. Furthermore, among the catalytic types, CTSD (cathepsin D) and MMP2 (matrix metalloproteinase-2) emerged as the most prominent peptidases in the aspartic and metallopeptidases categories, respectively. A comparison of our dataset with two of the most comprehensive urine peptidome datasets to date indicates a consistent relative abundance of core endogenous peptides for different proteins across all three datasets. These findings can serve as a foundational reference for the discovery of biomarkers in various human diseases.

6.
Biomolecules ; 13(5)2023 04 27.
Article in English | MEDLINE | ID: mdl-37238626

ABSTRACT

Urine is considered an outstanding biological fluid for biomarker discovery, reflecting both systemic and urogenital physiology. However, analyzing the N-glycome in urine in detail has been challenging due to the low abundance of glycans attached to glycoproteins compared to free oligosaccharides. Therefore, this study aims to thoroughly analyze urinary N-glycome using LC-MS/MS. The N-glycans were released using hydrazine and labeled with 2-aminopyridine (PA), followed by anion-exchange fractionation before LC-MS/MS analysis. A total of 109 N-glycans were identified and quantified, of which 58 were identified and quantified repeatedly in at least 80% of samples and accounted for approximately 85% of the total urinary glycome signal. Interestingly, a comparison between urine and serum N-glycome revealed that approximately 50% of the urinary glycome could originate from the kidney and urinary tract, where they were exclusively identified in urine, while the remaining 50% were common in both. Additionally, a correlation was found between age/sex and the relative abundances of urinary N-glycome, with more age-related changes observed in women than men. The results of this study provide a reference for human urine N-glycome profiling and structural annotations.


Subject(s)
Individuality , Tandem Mass Spectrometry , Male , Humans , Female , Chromatography, Liquid , Polysaccharides/chemistry , Glycoproteins
7.
Healthcare (Basel) ; 7(2)2019 May 19.
Article in English | MEDLINE | ID: mdl-31109144

ABSTRACT

Conventional sauna bathing may have some health benefits as it facilitates relaxing, detoxing and promoting metabolism. However, conventional sauna bathing at a high temperature may be harmful for the body by increasing the risk of heart failure. The nano-mist sauna has been developed to provide nano-size water particles at a lower temperature. Hence, nano-mist sauna bathing is expected to be useful for health without the risks that arise at high temperatures. In this study, we performed a comprehensive proteomics analysis of urine samples obtained from healthy volunteers before and after they had taken a sauna bath with nano-mist (n = 10) or with conventional mist (n = 10) daily for two weeks (4 groups). The average numbers of urine proteins identified by liquid chromatography-linked mass chromatography in each group varied from 678 to 753. Interestingly, the protein number was increased after sauna bathing both with nano-mist or with conventional mist. Quantitative analysis indicated that considerable numbers of proteins were obviously up-regulated, with more than two-folds in urine samples after the nano-mist sauna bathing. The KEGG pathway analysis showed significant stimulation of the lysosome pathway (p = 5.89E-6) after the nano-mist bathing, which may indicate the nano-mist sauna bathing promotes metabolism related to the lysosome pathway more efficiently than conventional mist sauna bathing and may provide more health benefits.

8.
Proteomes ; 6(1)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415455

ABSTRACT

Diabetic mellitus (DM) is a disease that affects glucose homeostasis and causes complications, such as diabetic nephropathy (DN). For early diagnosis of DN, microalbuminuria is currently one of the most frequently used biomarkers. However, more early diagnostic biomarkers are desired in addition to microalbuminuria. In this study, we performed comprehensive proteomics analysis of urine proteomes of diabetic mellitus patients without microalbuminuria and healthy volunteers to compare the protein profiles by mass spectrometry. With high confidence criteria, 942 proteins in healthy volunteer urine and 645 proteins in the DM patient urine were identified with label-free semi-quantitation, respectively. Gene ontology and pathway analysis were performed with the proteins, which were up- or down-regulated in the DM patient urine to elucidate significant changes in pathways. The discovery of a useful biomarker for early DN discovery is expected.

9.
J Proteomics ; 149: 7-14, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27535355

ABSTRACT

NeXtProt is a web-based protein knowledge platform that supports research on human proteins. NeXtProt (release 2015-04-28) lists 20,060 proteins, among them, 3373 canonical proteins (16.8%) lack credible experimental evidence at protein level (PE2:PE5). Therefore, they are considered as "missing proteins". A comprehensive bioinformatic workflow has been proposed to analyze these "missing" proteins. The aims of current study were to analyze physicochemical properties, existence and distribution of the tryptic cleavage sites, and to pinpoint the signature peptides of the missing proteins. Our findings showed that 23.7% of missing proteins were hydrophobic proteins possessing transmembrane domains (TMD). Also, forty missing entries generate tryptic peptides were either out of mass detection range (>30aa) or mapped to different proteins (<9aa). Additionally, 21% of missing entries didn't generate any unique tryptic peptides. In silico endopeptidase combination strategy increased the possibility of missing proteins identification. Coherently, using both mature protein database and signal peptidome database could be a promising option to identify some missing proteins by targeting their unique N-terminal tryptic peptide from mature protein database and or C-terminus tryptic peptide from signal peptidome database. In conclusion, Identification of missing protein requires additional consideration during sample preparation, extraction, digestion and data analysis to increase its incidence of identification.


Subject(s)
Computational Biology/methods , Peptide Mapping , Peptides/chemistry , Proteome/chemistry , Amino Acid Sequence , Computer Simulation , Databases, Protein , Datasets as Topic , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/classification , Proteome/classification , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL