Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anaerobe ; 83: 102769, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544355

ABSTRACT

OBJECTIVE: Clostridium perfringens causes food poisoning and gas gangrene, a serious wound-associated infection. C. perfringens cells adhere to collagen via fibronectin (Fn). We investigated whether the peptidoglycan hydrolase of C. perfringens, i.e., autolysin (Acp), is implicated in Fn binding to C. perfringens cells. METHODS: This study used recombinant Acp fragments, human Fn and knockout mutants (C. perfringens 13 acp::erm and HN13 ΔfbpC ΔfbpD). Ligand blotting, Western blotting analysis, and complementation tests were performed. The Fn-binding activity of each mutant was evaluated by ELISA. RESULTS: From an Fn-binding assay using recombinant Acp fragments, Fn was found to bind to the catalytic domain of Acp. In mutant cells lacking Acp, Fn binding was significantly decreased, but was restored by the complementation of the acp gene. There are three known kinds of Fn-binding proteins in C. perfringens: FbpC, FbpD, and glyceraldehyde-3-phosphate dehydrogenase. We found no difference in Fn-binding activity between the mutant cells lacking both FbpC and FbpD (SAK3 cells) and the wild-type cells, indicating that these Fn-binding proteins are not involved in Fn binding to C. perfringens cells. CONCLUSIONS: We found that the Acp is an Fn-binding protein that acts as an Fn receptor on the surface of C. perfringens cells.


Subject(s)
Clostridium perfringens , Gas Gangrene , Humans , Clostridium perfringens/genetics , Clostridium perfringens/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Integrin alpha5beta1/metabolism , Protein Binding , Carrier Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL