Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
NPJ Breast Cancer ; 7(1): 150, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34853355

ABSTRACT

The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.

2.
Nat Commun ; 10(1): 1373, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914635

ABSTRACT

Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Circulating Tumor DNA/genetics , Drug Resistance, Neoplasm/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Female , Fulvestrant/administration & dosage , Fulvestrant/pharmacology , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , Mice , Mutation , Naphthalenes/pharmacology , Piperazines/pharmacology , Progression-Free Survival , Proportional Hazards Models , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Purines/administration & dosage , Purines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Quinoxalines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptors, Estrogen/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
3.
Cancer Res ; 78(7): 1845-1858, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29358172

ABSTRACT

Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis. Genetic models suggest that selective mTORC2 inhibition would be effective in breast cancers, but the lack of selective small-molecule inhibitors of mTORC2 have precluded testing of this hypothesis to date. Here we report the engineering of a nanoparticle-based RNAi therapeutic that can effectively silence the mTORC2 obligate cofactor Rictor. Nanoparticle-based Rictor ablation in HER2-amplified breast tumors was achieved following intratumoral and intravenous delivery, decreasing Akt phosphorylation and increasing tumor cell killing. Selective mTORC2 inhibition in vivo, combined with the HER2 inhibitor lapatinib, decreased the growth of HER2-amplified breast cancers to a greater extent than either agent alone, suggesting that mTORC2 promotes lapatinib resistance, but is overcome by mTORC2 inhibition. Importantly, selective mTORC2 inhibition was effective in a triple-negative breast cancer (TNBC) model, decreasing Akt phosphorylation and tumor growth, consistent with our findings that RICTOR mRNA correlates with worse outcome in patients with basal-like TNBC. Together, our results offer preclinical validation of a novel RNAi delivery platform for therapeutic gene ablation in breast cancer, and they show that mTORC2-selective targeting is feasible and efficacious in this disease setting.Significance: This study describes a nanomedicine to effectively inhibit the growth regulatory kinase mTORC2 in a preclinical model of breast cancer, targeting an important pathogenic enzyme in that setting that has been undruggable to date. Cancer Res; 78(7); 1845-58. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Lapatinib/pharmacology , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Cell Survival/drug effects , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles , RNA, Small Interfering/genetics , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Receptor, ErbB-2/metabolism , Triple Negative Breast Neoplasms/pathology
4.
Clin Cancer Res ; 23(15): 4323-4334, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28381415

ABSTRACT

Purpose: Dual blockade of HER2 with trastuzumab and lapatinib or pertuzumab has been shown to be superior to single-agent trastuzumab. However, a significant fraction of HER2-overexpressing (HER2+) breast cancers escape from these drug combinations. In this study, we sought to discover the mechanisms of acquired resistance to the combination of lapatinib + trastuzumab.Experimental Design: HER2+ BT474 xenografts were treated with lapatinib + trastuzumab long-term until resistance developed. Potential mechanisms of acquired resistance were evaluated in lapatinib + trastuzumab-resistant (LTR) tumors by targeted capture next-generation sequencing. In vitro experiments were performed to corroborate these findings, and a novel drug combination was tested against LTR xenografts. Gene expression and copy-number analyses were performed to corroborate our findings in clinical samples.Results: LTR tumors exhibited an increase in FGF3/4/19 copy number, together with an increase in FGFR phosphorylation, marked stromal changes in the tumor microenvironment, and reduced tumor uptake of lapatinib. Stimulation of BT474 cells with FGF4 promoted resistance to lapatinib + trastuzumab in vitro Treatment with FGFR tyrosine kinase inhibitors reversed these changes and overcame resistance to lapatinib + trastuzumab. High expression of FGFR1 correlated with a statistically shorter progression-free survival in patients with HER2+ early breast cancer treated with adjuvant trastuzumab. Finally, FGFR1 and/or FGF3 gene amplification correlated with a lower pathologic complete response in patients with HER2+ early breast cancer treated with neoadjuvant anti-HER2 therapy.Conclusions: Amplification of FGFR signaling promotes resistance to HER2 inhibition, which can be diminished by the combination of HER2 and FGFR inhibitors. Clin Cancer Res; 23(15); 4323-34. ©2017 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Fibroblast Growth Factor 3/genetics , Receptor, ErbB-2/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease-Free Survival , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Fibroblast Growth Factor 3/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lapatinib , Mice , Neoadjuvant Therapy/adverse effects , Protein Kinase Inhibitors/administration & dosage , Quinazolines/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
5.
Sci Transl Med ; 9(402)2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28794284

ABSTRACT

Inhibition of proliferation in estrogen receptor-positive (ER+) breast cancers after short-term antiestrogen therapy correlates with long-term patient outcome. We profiled 155 ER+/human epidermal growth factor receptor 2-negative (HER2-) early breast cancers from 143 patients treated with the aromatase inhibitor letrozole for 10 to 21 days before surgery. Twenty-one percent of tumors remained highly proliferative, suggesting that these tumors harbor alterations associated with intrinsic endocrine therapy resistance. Whole-exome sequencing revealed a correlation between 8p11-12 and 11q13 gene amplifications, including FGFR1 and CCND1, respectively, and high Ki67. We corroborated these findings in a separate cohort of serial pretreatment, postneoadjuvant chemotherapy, and recurrent ER+ tumors. Combined inhibition of FGFR1 and CDK4/6 reversed antiestrogen resistance in ER+FGFR1/CCND1 coamplified CAMA1 breast cancer cells. RNA sequencing of letrozole-treated tumors revealed the existence of intrachromosomal ESR1 fusion transcripts and increased expression of gene signatures indicative of enhanced E2F-mediated transcription and cell cycle processes in cancers with high Ki67. These data suggest that short-term preoperative estrogen deprivation followed by genomic profiling can be used to identify druggable alterations that may cause intrinsic endocrine therapy resistance.


Subject(s)
Breast Neoplasms/genetics , Receptors, Estrogen/metabolism , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Female , Humans , In Vitro Techniques , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, Estrogen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL