Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 14(2): e0212809, 2019.
Article in English | MEDLINE | ID: mdl-30794697

ABSTRACT

We evaluated the impact of bacterial rhabduscin synthesis on bacterial virulence and phenoloxidase inhibition in a Spodoptera model. We first showed that the rhabduscin cluster of the entomopathogenic bacterium Xenorhabdus nematophila was not necessary for virulence in the larvae of Spodoptera littoralis and Spodoptera frugiperda. Bacteria with mutations affecting the rhabduscin synthesis cluster (ΔisnAB and ΔGT mutants) were as virulent as the wild-type strain. We then developed an assay for measuring phenoloxidase activity in S. frugiperda and assessed the ability of bacterial culture supernatants to inhibit the insect phenoloxidase. Our findings confirm that the X. nematophila rhabduscin cluster is required for the inhibition of S. frugiperda phenoloxidase activity. The X. nematophila ΔisnAB mutant was unable to inhibit phenoloxidase, whereas ΔGT mutants displayed intermediate levels of phenoloxidase inhibition relative to the wild-type strain. The culture supernatants of Escherichia coli and of two entomopathogenic bacteria, Serratia entomophila and Xenorhabdus poinarii, were unable to inhibit S. frugiperda phenoloxidase activity. Heterologous expression of the X. nematophila rhabduscin cluster in these three strains was sufficient to restore inhibition. Interestingly, we observed pseudogenization of the X. poinarii rhabduscin gene cluster via the insertion of a 120 bp element into the isnA promoter. The inhibition of phenoloxidase activity by X. poinarii culture supernatants was restored by expression of the X. poinarii rhabduscin cluster under the control of an inducible Ptet promoter, consistent with recent pseudogenization. This study paves the way for advances in our understanding of the virulence of several entomopathogenic bacteria in non-model insects, such as the new invasive S. frugiperda species in Africa.


Subject(s)
Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Multigene Family , Spodoptera/enzymology , Xenorhabdus , Animals , Insect Proteins/genetics , Monophenol Monooxygenase/genetics , Mutation , Pest Control, Biological , Spodoptera/genetics , Xenorhabdus/genetics , Xenorhabdus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL