Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
EMBO J ; 37(14)2018 07 13.
Article in English | MEDLINE | ID: mdl-29934293

ABSTRACT

The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA-DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X-ray structures of APTX engaging nicked RNA-DNA substrates that provide direct evidence for a wedge-pivot-cut strategy for 5'-AMP resolution shared with the alternate 5'-AMP processing enzymes POLß and FEN1. Our results uncover a DNA-induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X-ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.


Subject(s)
DNA Breaks, Single-Stranded , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Neurodegenerative Diseases/pathology , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Nuclear Proteins/genetics , Protein Binding , Protein Conformation , Protein Stability , RNA/chemistry , RNA/metabolism
2.
Bioorg Med Chem Lett ; 26(11): 2724-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27086121

ABSTRACT

We have previously reported a series of anilinoquinazoline derivatives as potent and selective biochemical inhibitors of the RET kinase domain. However, these derivatives displayed diminished cellular potency. Herein we describe further optimisation of the series through modification of their physicochemical properties, delivering improvements in cell potency. However, whilst cellular selectivity against key targets could be maintained, combining cell potency and acceptable pharmacokinetics proved challenging.


Subject(s)
Aniline Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Quinazolines/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-ret/metabolism , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
3.
Elife ; 122023 10 26.
Article in English | MEDLINE | ID: mdl-37883155

ABSTRACT

Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The doublecortin-like kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations, and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other calcium calmodulin kinases (CAMKs), and a 'Swiss Army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for autoregulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically divergent DCLK1 modulators, stabilizers, or degraders.


Subject(s)
Biological Evolution , Protein Serine-Threonine Kinases , Humans , Protein Isoforms/genetics , Protein Serine-Threonine Kinases/genetics , Alternative Splicing , Calcium, Dietary , Doublecortin-Like Kinases
4.
bioRxiv ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37034755

ABSTRACT

Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The Doublecortin Like Kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other Calcium Calmodulin Kinases (CAMKs), and a 'Swiss-army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for auto-regulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor-binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically-divergent DCLK1 modulators, stabilizers or degraders.

5.
Methods Enzymol ; 667: 79-99, 2022.
Article in English | MEDLINE | ID: mdl-35525562

ABSTRACT

Human Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a broad human protein interactome, including the well-studied AKT, C/EBPα and MAPK modules. Several lines of evidence indicate that human TRIB2 promotes cell survival and drug-resistance in solid tumors and blood cancers and is therefore of interest as a potential therapeutic target, although its physiological functions remain relatively poorly understood. The unique TRIB2 pseudokinase domain lacks the canonical 'DFG' motif, and subsequently possesses very low affinity for ATP in both the presence and absence of metal ions. However, TRIB2 also contains a unique cysteine-rich αC-helix, which interacts with a conserved peptide motif in its own carboxyl-terminal tail. This regulatory flanking region drives regulated interactions with distinct E3 ubiquitin ligases that serve to control the stability and turnover of TRIB2 client proteins. TRIB2 is also a low-affinity target of several known small-molecule protein kinase inhibitors, which were originally identified using purified recombinant TRIB2 proteins and a thermal shift assay. In this chapter, we discuss laboratory-based procedures for purification, stabilization and analysis of human TRIB2, including screening procedures that can be used for the identification of both reversible and covalent small molecule ligands.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases , Neoplasms , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Neoplasms/pathology , Ubiquitin-Protein Ligases/metabolism
6.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Article in English | MEDLINE | ID: mdl-34790902

ABSTRACT

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mice
7.
Cell Rep ; 22(13): 3641-3659, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590629

ABSTRACT

Pharmacologic inhibition of LSD1 promotes blast cell differentiation in acute myeloid leukemia (AML) with MLL translocations. The assumption has been that differentiation is induced through blockade of LSD1's histone demethylase activity. However, we observed that rapid, extensive, drug-induced changes in transcription occurred without genome-wide accumulation of the histone modifications targeted for demethylation by LSD1 at sites of LSD1 binding and that a demethylase-defective mutant rescued LSD1 knockdown AML cells as efficiently as wild-type protein. Rather, LSD1 inhibitors disrupt the interaction of LSD1 and RCOR1 with the SNAG-domain transcription repressor GFI1, which is bound to a discrete set of enhancers located close to transcription factor genes that regulate myeloid differentiation. Physical separation of LSD1/RCOR1 from GFI1 is required for drug-induced differentiation. The consequent inactivation of GFI1 leads to increased enhancer histone acetylation within hours, which directly correlates with the upregulation of nearby subordinate genes.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Transcription Factors/antagonists & inhibitors , Cell Differentiation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
8.
J Med Chem ; 61(23): 10767-10792, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30403352

ABSTRACT

DNA damage repair enzymes are promising targets in the development of new therapeutic agents for a wide range of cancers and potentially other diseases. The enzyme poly(ADP-ribose) glycohydrolase (PARG) plays a pivotal role in the regulation of DNA repair mechanisms; however, the lack of potent drug-like inhibitors for use in cellular and in vivo models has limited the investigation of its potential as a novel therapeutic target. Using the crystal structure of human PARG in complex with the weakly active and cytotoxic anthraquinone 8a, novel quinazolinedione sulfonamides PARG inhibitors have been identified by means of structure-based virtual screening and library design. 1-Oxetan-3-ylmethyl derivatives 33d and 35d were selected for preliminary investigations in vivo. X-ray crystal structures help rationalize the observed structure-activity relationships of these novel inhibitors.


Subject(s)
DNA Repair , Drug Design , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Quinazolinones/chemistry , Quinazolinones/pharmacology , Administration, Oral , Animals , Biological Availability , Catalytic Domain , Glycoside Hydrolase Inhibitors/administration & dosage , Glycoside Hydrolase Inhibitors/pharmacokinetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , HeLa Cells , Humans , Male , Mice , Models, Molecular , Quinazolinones/administration & dosage , Quinazolinones/pharmacokinetics , Structure-Activity Relationship
9.
F1000Res ; 5: 736, 2016.
Article in English | MEDLINE | ID: mdl-27610220

ABSTRACT

After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

10.
ACS Chem Biol ; 11(11): 3179-3190, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27689388

ABSTRACT

The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).


Subject(s)
DNA Repair , Glycoside Hydrolases/chemistry , Molecular Probes/chemistry , Phthalazines/pharmacology , Piperazines/pharmacology , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , HeLa Cells , Humans , Surface Plasmon Resonance
11.
J Med Chem ; 59(24): 11120-11137, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002956

ABSTRACT

A collaborative high throughput screen of 1.35 million compounds against mutant (R132H) isocitrate dehydrogenase IDH1 led to the identification of a novel series of inhibitors. Elucidation of the bound ligand crystal structure showed that the inhibitors exhibited a novel binding mode in a previously identified allosteric site of IDH1 (R132H). This information guided the optimization of the series yielding submicromolar enzyme inhibitors with promising cellular activity. Encouragingly, one compound from this series was found to induce myeloid differentiation in primary human IDH1 R132H AML cells in vitro.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/enzymology , Allosteric Regulation/drug effects , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Isocitrate Dehydrogenase/isolation & purification , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/pathology , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
12.
Eur J Med Chem ; 112: 20-32, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26874741

ABSTRACT

Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Animals , Cell Line , Drug Design , Humans , Mice , Molecular Docking Simulation , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-ret/metabolism , Quinazolines/pharmacokinetics
13.
J Med Chem ; 55(9): 4431-45, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22506561

ABSTRACT

Novel derivatives of the steroid DHEA 1, a known uncompetitive inhibitor of G6PD, were designed, synthesized, and tested for their ability to inhibit this dehydrogenase enzyme. Several compounds with approximately 10-fold improved potency in an enzyme assay were identified, and this improved activity translated to efficacy in a cellular assay. The SAR for steroid inhibition of G6PD has been substantially developed; the 3ß-alcohol can be replaced with 3ß-H-bond donors such as sulfamide, sulfonamide, urea, and carbamate. Improved potency was achieved by replacing the androstane nucleus with a pregnane nucleus, provided a ketone at C-20 is present. For pregnan-20-ones incorporation of a 21-hydroxyl group is often beneficial. The novel compounds generally have good physicochemical properties and satisfactory in vitro DMPK parameters. These derivatives may be useful for examining the role of G6PD inhibition in cells and will assist the future design of more potent steroid inhibitors with potential therapeutic utility.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Pregnanes/chemistry , Pregnanes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Glucosephosphate Dehydrogenase/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Mass Spectrometry , Pregnanes/chemical synthesis , Pregnanes/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL