Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Affiliation country
Publication year range
1.
J Cell Physiol ; 238(8): 1732-1755, 2023 08.
Article in English | MEDLINE | ID: mdl-37334836

ABSTRACT

Cardiovascular disease (CVD) has become a severe threat to human health, with morbidity and mortality increasing yearly and gradually becoming younger. When the disease progresses to the middle and late stages, the loss of a large number of cardiomyocytes is irreparable to the body itself, and clinical drug therapy and mechanical support therapy cannot reverse the development of the disease. To explore the source of regenerated myocardium in model animals with the ability of heart regeneration through lineage tracing and other methods, and develop a new alternative therapy for CVDs, namely cell therapy. It directly compensates for cardiomyocyte proliferation through adult stem cell differentiation or cell reprogramming, which indirectly promotes cardiomyocyte proliferation through non-cardiomyocyte paracrine, to play a role in heart repair and regeneration. This review comprehensively summarizes the origin of newly generated cardiomyocytes, the research progress of cardiac regeneration based on cell therapy, the opportunity and development of cardiac regeneration in the context of bioengineering, and the clinical application of cell therapy in ischemic diseases.


Subject(s)
Cardiovascular Diseases , Heart , Animals , Humans , Myocardium , Myocytes, Cardiac , Cell Differentiation , Cell- and Tissue-Based Therapy , Cell Proliferation
2.
Anal Chem ; 95(33): 12240-12246, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556358

ABSTRACT

Ferroptosis is an iron-regulated, caspase-mediated pathway of cell death that is associated with the excessive aggregation of lipid-reactive oxygen species and is extensively involved in the evolution of many diseases, including epilepsy. The superoxide anion (O2•-), as the primary precursor of ROS, is closely related to ferroptosis-mediated epilepsy. Therefore, it is crucial to establish a highly effective and convenient method for the real-time dynamic monitoring of O2•- during the ferroptosis process in epilepsy for the diagnosis and therapy of ferroptosis-mediated epilepsy. Nevertheless, no probes for detecting O2•- in ferroptosis-mediated epilepsy have been reported. Herein, we systematically conceptualized and developed a novel near-infrared (NIR) fluorescence probe, NIR-FP, for accurately tracking the fluctuation of O2•- in ferroptosis-mediated epilepsy. The probe showed exceptional sensitivity and outstanding selectivity toward O2•-. In addition, the probe has been utilized effectively to bioimage and evaluate endogenous O2•- variations in three types of ferroptosis-mediated epilepsy models (the kainic acid-induced chronic epilepsy model, the pentylenetetrazole-induced acute epilepsy model, and the pilocarpine-induced status epilepticus model). The above applications illustrated that NIR-FP could serve as a reliable and suitable tool for guiding the accurate diagnosis and therapy of ferroptosis-mediated epilepsy.


Subject(s)
Epilepsy , Ferroptosis , Humans , Superoxides/metabolism , Fluorescence , Epilepsy/diagnostic imaging , Epilepsy/metabolism , Reactive Oxygen Species
3.
Article in English | MEDLINE | ID: mdl-37991600

ABSTRACT

BACKGROUND: Myocardial infarction remains a disease with high morbidity and death rate among cardiovascular diseases. Macrophages are abundant immune cells in the heart. Under different stimulatory factors, macrophages can differentiate into different phenotypes and play a dual pro-inflammatory and anti-inflammatory role. Therefore, a potential strategy for the treatment of myocardial infarction is to regulate the energy metabolism of macrophages and thereby regulate the polarization of macrophages. Tan IIA is an effective liposolubility component extracted from the root of Salvia miltiorrhiza and plays an important role in the treatment of cardiovascular diseases. On this basis, this study proposed whether Tan IIA could affect phenotype changes by regulating energy metabolism of macrophages, and thus exert its potential in the treatment of MI. METHODS: Establishing a myocardial infarction model, Tan IIA was given for 3 days and 7 days for intervention. Cardiac function was detected by echocardiography, and cardiac pathological sections of each group were stained with HE and Masson to observe the inflammatory cell infiltration and fibrosis area after administration. The expression and secretion of inflammatory factors in heart tissue and serum of each group, as well as the proportion of macrophages at the myocardial infarction site, were detected using RT-PCR, ELISA, and immunofluorescence. The mitochondrial function of macrophages was evaluated using JC-1, calcium ion concentration detection, reactive oxygen species detection, and mitochondrial electron microscopic analysis. Mechanically, single-cell transcriptome data mining, cell transcriptome sequencing, and molecular docking technology were used to anchor the target of Tan IIA and enrich the pathways to explore the mechanism of Tan IIA regulating macrophage energy metabolism and phenotype. The target of Tan IIA was further determined by gene knockdown and overexpression assay. RESULTS: The intervention of Tan IIA can improve the cardiac function, inflammatory cell infiltration and fibrosis after MI, reduce the expression of inflammatory factors in the heart, enhance the secretion of anti-inflammatory factors, increase the proportion of M2-type macrophages, reduce the proportion of M1-type macrophages, and promote tissue repair, suggesting that Tan IIA has pharmacological effects in the treatment of MI. In terms of mechanism, RNA-seq results suggest that the phenotype of macrophages is strongly correlated with energy metabolism, and Tan IIA can regulate the PGK1-PDHK1 signaling pathway, change the energy metabolism mode of macrophages, and then affect its phenotype. CONCLUSION: Tan IIA regulates the energy metabolism of macrophages and changes its phenotype through the PGK1-PDHK1 signaling pathway, thus playing a role in improving MI.

4.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834623

ABSTRACT

Appropriate exercise such as voluntary wheel-running can induce physiological cardiac hypertrophy. Notch1 plays an important role in cardiac hypertrophy; however, the experimental results are inconsistent. In this experiment, we aimed to explore the role of Notch1 in physiological cardiac hypertrophy. Twenty-nine adult male mice were randomly divided into a Notch1 heterozygous deficient control (Notch1+/- CON) group, a Notch1 heterozygous deficient running (Notch1+/- RUN) group, a wild type control (WT CON) group, and a wild type running (WT RUN) group. Mice in the Notch1+/- RUN and WT RUN groups had access to voluntary wheel-running for two weeks. Next, the cardiac function of all of the mice was examined by echocardiography. The H&E staining, Masson trichrome staining, and a Western blot assay were carried out to analyze cardiac hypertrophy, cardiac fibrosis, and the expression of proteins relating to cardiac hypertrophy. After two-weeks of running, the Notch1 receptor expression was decreased in the hearts of the WT RUN group. The degree of cardiac hypertrophy in the Notch1+/- RUN mice was lower than that of their littermate control. Compared to the Notch1+/- CON group, Notch1 heterozygous deficiency could lead to a decrease in Beclin-1 expression and the ratio of LC3II/LC3I in the Notch1+/- RUN group. The results suggest that Notch1 heterozygous deficiency could partly dampen the induction of autophagy. Moreover, Notch1 deficiency may lead to the inactivation of p38 and the reduction of ß-catenin expression in the Notch1+/- RUN group. In conclusion, Notch1 plays a critical role in physiologic cardiac hypertrophy through the p38 signaling pathway. Our results will help to understand the underlying mechanism of Notch1 on physiological cardiac hypertrophy.


Subject(s)
Cardiomegaly , Heart , Animals , Male , Mice , Motor Activity/physiology , Receptor, Notch1/metabolism , Signal Transduction/physiology
5.
Anal Chem ; 94(42): 14778-14784, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36223488

ABSTRACT

Sepsis-induced acute lung injury (ALI) is mostly attributed to an outbreak of reactive oxygen species (ROS), which makes leukocytes infiltrate into the lung and results in lung hypoxia. Nitroreductase (NTR) is significantly upregulated under hypoxia, which is commonly regarded as a potential biomarker for assessing sepsis-induced acute lung hypoxia. Increasing evidence shows that NTR in the Golgi apparatus could be induced in sepsis-induced ALI. Meanwhile, the prolyl hydroxylase (PHD) inhibitor (dimethyloxalylglycine, DMOG) attenuated sepsis-induced ALI through further increasing the level of Golgi NTR by improving hypoxia inducible factor-1α (HIF-1α) activity, but as yet, no Golgi-targetable probe has been developed for monitoring and assessing treatment response of sepsis-induced ALI. Herein, we report a Golgi-targetable probe, Gol-NTR, for monitoring and assessing treatment response of sepsis-induced ALI through mapping the generation of NTR. The probe displayed high sensitivity with a low detection limit of 54.8 ng/mL and good selectivity to NTR. In addition, due to the excellent characteristics of Golgi-targetable, Gol-NTR was successfully applied in mapping the change of Golgi NTR in cells and zebrafish caused by various stimuli. Most importantly, the production of Golgi NTR in the sepsis-induced ALI and the PHD inhibitor (DMOG) against sepsis-induced ALI were visualized and precisely assessed for the first time with the assistance of Gol-NTR. The results demonstrated the practicability of Gol-NTR for the precise monitoring and assessing of the personalized treatment response of sepsis-induced ALI.


Subject(s)
Fluorescent Dyes , Sepsis , Animals , Reactive Oxygen Species , Zebrafish , Nitroreductases , Hypoxia , Sepsis/complications , Sepsis/drug therapy , Lung , Prolyl Hydroxylases , Golgi Apparatus
6.
Heart Fail Rev ; 27(3): 961-980, 2022 05.
Article in English | MEDLINE | ID: mdl-33713009

ABSTRACT

Heart failure (HF) often coexists with insulin resistance (IR), and the incidence of HF in type 2 diabetes mellitus (T2DM) patients is significantly higher. The reciprocal relationship between HF and IR has long been recognized, and the integration complicates the therapy of both. A number of mechanisms ascribe to the progression of cardiac IR, in which the main factors are the shift of myocardial substrate metabolism. Studies have found that SGLT2 inhibitors, an anti-diabetic drug, can improve the cardiac prognosis of patients with T2DM, which may be at least partially due to the relief of cardiac IR. Basic and clinical studies have revealed the important role of cardiac IR in the pathogenesis and progression of HF, and studies suggest that energy metabolism plays an important role in the pathogenesis of cardiac IR and HF. SGLT2 inhibitors mediated cardiovascular benefits through various mechanisms such as improving substrate utilization and improving myocardial energy. The regulation of SGLT2 inhibitors on cardiac energy status including carbohydrates, fatty acids (FA), amino acids and ketones, ATP transfer to the cytoplasm, and mitochondrial functional status have received extensive attention in HF, but its specific mechanism of action is still unclear. Therefore, this article reviews the relationship between IR and HF from the perspective of energy metabolism; subsequently, targeting energy metabolism discusses the pivotal role of SGLT2 inhibitors in improving cardiac IR and HF based on basic and clinical research evidences, and sought to clarify the molecular mechanism involved. (Fig. 1).


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Insulin Resistance , Sodium-Glucose Transporter 2 Inhibitors , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
7.
Pharm Biol ; 60(1): 743-754, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35357989

ABSTRACT

CONTEXT: Acute lung injury (ALI) is a complex, severe inflammation disease with high mortality, and there is no specific and effective treatment for ALI. Qingfei Xiaoyan Wan (QFXYW) has been widely used to treat lung-related diseases for centuries. OBJECTIVE: This study evaluates the potential effects and elucidates the therapeutic mechanism of QFXYW against LPS induced ALI in mice. MATERIALS AND METHODS: BALB/c Mice in each group were first orally administered medicines (0.9% saline solution for the control group, 0.5 mg/kg Dexamethasone, or 1.3, 2.6, 5.2 g/kg QFXYW), after 4 h, the groups were injected LPS (1.0 mg/kg) to induce ALI, then the same medicines were administered repeatedly. The transcriptomics-based system pharmacological analyses were applied to screen the hub genes, RT-PCR, ELISA, and protein array assay was applied to verify the predicted hub genes and key pathways. RESULTS: QFXYW significantly decreased the number of leukocytes from (6.34 ± 0.51) × 105/mL to (4.01 ± 0.11) × 105/mL, accompanied by the neutrophil from (1.41 ± 0.19) × 105/mL to (0.77 ± 0.10) × 105/mL in bronchoalveolar lavage fluid (BALF). Based on Degree of node connection (Degree) and BottleNeck (BN), important parameters of network topology, the protein-protein interaction (PPI) network screened hub genes, including IL-6, TNF-α, CCL2, TLR2, CXCL1, and MMP-9. The results of RT-PCR, ELISA, and protein chip assay revealed that QFXYW could effectively inhibit ALI via multiple key targets and the cytokine-cytokine signalling pathway. CONCLUSIONS: This study showed that QFXYW decreased the number of leukocytes and neutrophils by attenuating inflammatory response, which provides an important basis for the use of QFXYW in the treatment of ALI.


Subject(s)
Acute Lung Injury , Cytokine Release Syndrome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Transcriptome
8.
Pharmacol Res ; 166: 105481, 2021 04.
Article in English | MEDLINE | ID: mdl-33549726

ABSTRACT

Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.


Subject(s)
Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Ginsenosides/therapeutic use , Animals , Cardiotonic Agents/adverse effects , Cardiotonic Agents/chemistry , Cardiotonic Agents/pharmacology , Cardiovascular Diseases/pathology , Ginsenosides/adverse effects , Ginsenosides/chemistry , Ginsenosides/pharmacology , Humans , Panax/chemistry , Phytotherapy
9.
Pharmacol Res ; 172: 105843, 2021 10.
Article in English | MEDLINE | ID: mdl-34428586

ABSTRACT

SUMOylation of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) has been shown to play a critical role in the abnormal Ca2+ cycle of heart failure. Ginsenoside Rg3 (Rg3), the main active constituent of Panax ginseng, exerts a wide range of pharmacological effects in cardiovascular diseases. However, the effect of Rg3 on abnormal Ca2+ homeostasis in heart failure has not been reported. In this study, we showed a novel role of Rg3 in the abnormal Ca2+ cycle in cardiomyocytes of mice with heart failure. Among mice undergoing transverse aortic constriction, animals that received Rg3 showed improvements in cardiac function and Ca2+ homeostasis, accompanied by increases in the SUMOylation level and SERCA2a activity. In an isoproterenol (ISO)-induced cell hypertrophy model, Rg3 reduced the ISO-induced Ca2+ overload in HL-1 cells. Gene knockout of SUMO1 in mice inhibited the cardioprotective effect of Rg3, and SUMO1 knockout mice that received Rg3 did not exhibit improved Ca2+ homeostasis in cardiomyocytes. Additionally, mutation of the SUMOylation sites of SERCA2a blocked the positive effect of Rg3 on the ISO-induced abnormal Ca2+ cycle in HL-1 cells, and was accompanied by an abnormal endoplasmic reticulum stress response and generation of ROS. Our data demonstrated that Rg3 has a positive effect on the abnormal Ca2+ cycle in the cardiomyocytes of mice with heart failure. SUMO1 is an important factor that mediates the protective effect of Rg3. Our findings suggest that drug intervention by regulating the SUMOylation of SERCA2a can provide a novel therapeutic strategy for the treatment of heart failure.


Subject(s)
Cardiotonic Agents/therapeutic use , Ginsenosides/therapeutic use , Heart Failure/drug therapy , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sumoylation/drug effects , Animals , Calcium/metabolism , Cardiotonic Agents/pharmacology , Cell Line , Ginsenosides/pharmacology , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Ventricular Function, Left/drug effects
10.
Phytother Res ; 35(10): 5883-5898, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34427348

ABSTRACT

Efficient therapy of idiopathic pulmonary fibrosis (IPF) is still a major challenge. The current studies with single-target drug therapy are the pessimistic approaches due to the complex characteristics of IPF. Here, a combination therapy of Tanshinone IIA and Puerarin for IPF was proposed to alleviate IPF due to their antiinflammatory and anti-fibrotic effects. In vivo, the combination therapy could significantly attenuate the area of ground glass opacification that was presented by 85% percentile density score of the micro-CT images when compared to single conditions. In addition, the combination therapy enormously improved the survival rate and alleviated pathological changes in bleomycin (BLM)-induced IPF mice. By using a wide spectrum of infiltration biomarkers in immunofluorescence assay in pathological sections, we demonstrate that fewer IL6 related macrophage infiltration and fibrosis area after this combination therapy, and further proved that IL6-JAK2-STAT3/STAT1 is the key mechanism of the combination therapy. In vitro, combination therapy markedly inhibited the fibroblasts activation and migration which was induced by TGF-ß1 or/and IL6 through JAK2-STAT3/STAT1 signaling pathway. This study demonstrated that combination therapeutic effect of TanIIA and Pue on IPF may be related to the reduced inflammatory response targeting IL6, which could be an optimistic and effective approach for IPF.


Subject(s)
Interleukin-6 , Pulmonary Fibrosis , Abietanes , Animals , Bleomycin , Fibroblasts/metabolism , Interleukin-6/metabolism , Isoflavones , Lung/metabolism , Mice , Pulmonary Fibrosis/drug therapy , STAT1 Transcription Factor , Signal Transduction
11.
Curr Atheroscler Rep ; 22(8): 31, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32556603

ABSTRACT

PURPOSE: Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis. RECENT FINDINGS: ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR-/- mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2hi (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2hi, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2hi, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively. The phenotypes of macrophages are very different from the previous studies. In general, Trem2hi macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.


Subject(s)
Atherosclerosis/metabolism , Macrophages/classification , Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Animals , Dendritic Cells/metabolism , Humans , Inflammation/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Monocytes/metabolism , Phenotype , RNA-Seq/methods , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Single-Cell Analysis/methods , Transcriptome
12.
J Mol Cell Cardiol ; 137: 59-70, 2019 12.
Article in English | MEDLINE | ID: mdl-31629735

ABSTRACT

BACKGROUND: Ventricular remodeling is a major pathological process of normal heart failure. With the aging of society, poor diet control, social, psychological and other risk factors in our country, the incidence of myocardial infarction and hypertension is reported to increase yearly. Many treatment methods have effectively delayed the occurrence of ventricular remodeling. However, in order to prevent and delay the occurrence and development of ventricular remodeling, the new treatment strategy cannot be ignored. METHODS: In this study, we used male C57BL/6 mice (8 weeks old), weight 23 g-27 g, SPF grade. According to the established methods of the research group, the left anterior descending branch of the coronary artery (LAD) was used to make the model of myocardial ischemia, and which was evaluated by the change of EF value in mice. The experiment included seven groups: sham operation group, model group, metoprolol group, puerarin group, tanshinone IIA group, tanshinone IIA: puerarin =1:1 group, tanshinone IIA: puerarin =1:2 group. The changes of cardiac function in each group were observed by echocardiography and hemodynamics after the drug delivery cycle was 3d, 7d, 14d and 28d. Detection of 3d serum enzyme indexes LDH, CK and CK-MB by automatic biochemical analyzer. The expression of CD11b, F4/80, Ly6C in cardiac tissues were detected by flow cytometry at 3d and 7d. The expression of IL-1ß and TNF- α in serum were detected by ELISA. IL-1ß, IL-6, IL-10, iNOS and other related genes were detected by RT-PCR method. HE, Masson staining and immunohistochemical staining were used to observe the changes of myocardial histomorphology in mice. We also examined the effects of different drug treatments on the proliferation and function of Raw264.7 cells, H9C2 cells and HUVECs. Western blot examined the effects of different drug treatments on the expression of inflammatory pathway related proteins TLR4 and C/EBP-ß. RESULTS: 1. Echocardiographic results showed that with the prolongation of ischemic time, the ejection fraction of the model group, the shortening rate of the short axis of the left ventricle, the flow rate of the outflow tract were significantly decreased, and the structure of the ventricle was significantly changed. Hemodynamic tests showed that the maximum and maximum rate of decline in the post-ischemia model group were significantly reduced, with increased systolic and diastolic volume, and a decrease in pressure difference. After treatment with drugs, all groups improved, but tanshinone IIA: puerarin = 1:1 group can significantly improve the above indicators after 28d of administration, which can effectively relieve the deterioration of cardiac function caused by acute myocardial infarction. 2. After administration for 3 and 7 days, the inflammatory cell CD11b monocytes and the F4/80 phenotype macrophages in heart tissue were detected by flow cytometry, and it was found that tanshinone IIA: puerarin = 1:1 can inhibit the release of inflammatory cells. The results of RT-PCR showed that the tanshinone IIA: puerarin = 1:1 group significantly improved the expression of inflammatory cytokines such as IL-1ß, IL-6, IL-10, and iNOS. In the immunohistochemical analysis of iNOS and Arg-1, the tanshinone IIA and puerarin 1:1 treatment group was able to inhibit the expression of M1 macrophages in the early stage of inflammation and promote the expression of M2 macrophages. 3. The cardiac index increased significantly and the serum TGF-ß increased after 28d. The combination of tanshinone IIA and puerarin could significantly reduce these indexes. HE, Masson, Sirius red and immunohistochemical staining were found in the combination of tanshinone IIA and puerarin can significantly reduce the structure of acute ischemic myocardial cell damage and interstitial edema, reduce collagen synthesis, and fibroblasts release, thereby inhibiting myocardial fibrosis and heart remodeling. 4. MTT assay showed a significantly greater proliferation of above two cells types treated with tanshinone IIA: puerarin =1:1 and more nodes and meshes were found in tanshinone IIA: puerarin =1:1 group compared with other groups. 5. The combination of tanshinone IIA and puerarin could regulate inflammation through inhibiting the expression of TLR4 protein, but up-regulating the expression of C/EBP-ß protein. CONCLUSION: The combination of tanshinone IIA and puerarin inhibits the immersion of inflammatory cells. Improving hemodynamics by improving cardiac function, reducing the destruction of cardiac myocytes, reducing collagen synthesis, inhibiting myocardial fibrosis and ventricular remodeling. Through the whole experiment, tanshinone IIA: puerarin = 1:1 is the best.


Subject(s)
Abietanes/therapeutic use , Heart/physiopathology , Inflammation/pathology , Isoflavones/therapeutic use , Myocardial Ischemia/drug therapy , Myocardial Ischemia/physiopathology , Abietanes/pharmacology , Animals , CD11 Antigens/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heart/drug effects , Heart Function Tests/drug effects , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hemodynamics/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/complications , Isoflavones/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Mice , Monocytes/drug effects , Monocytes/metabolism , Myocardial Ischemia/enzymology , Myocardium/enzymology , Myocardium/pathology , RAW 264.7 Cells , Signal Transduction/drug effects , Ventricular Remodeling/drug effects
13.
Biochem Biophys Res Commun ; 512(4): 770-778, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30928103

ABSTRACT

Cholestasis, which is characterized by bile acid (BA) overload within the hepatocytes, is a major contributor to liver injury. The dysregulation of bile acid homeostasis, such as excessive bile acid synthesis and defected secretion, leads to intracellular retention of hydrophobic bile acid which undermines the physiological function of hepatocytes. Cholestasis can further develop into hepatic fibrosis and cirrhosis, and eventually life-threating liver failure. In the liver, BA-activated FXR can reduce hepatic BA concentration by negative feedback regulation. Clinically, FXR and PPARα are the pharmacological targets of obeticholic acid and fenofibrate for the treatment of primary biliary cirrhosis, respectively. Formononetin, a natural isoflavone compound, exerts beneficial effects in various biological processes, such as anti-inflammation, anti-tumor. However, the role of formononetin in bile acid metabolism remains unclear. Herein, we show that formononetin improves hepatic/systemic bile acid metabolism and protects against ANIT-induced liver injury. Mechanistically, formononetin improves the genes profile orchestrating bile acid homeostasis through modulating SIRT1-FXR signaling pathway. Moreover, formononetin attenuated ANIT-induced inflammatory response by inactivating JNK inflammation pathway in PPARα dependent manner. Taken together, our study demonstrates that formononetin ameliorates hepatic cholestasis by upregulating expression of SIRT1 and activating PPARα, which is an important anti-cholestatic mechanism of formononetin.


Subject(s)
Cholestasis/drug therapy , Isoflavones/pharmacology , PPAR alpha/metabolism , Sirtuin 1/metabolism , 1-Naphthylisothiocyanate/toxicity , Animals , Bile Acids and Salts/biosynthesis , Bile Acids and Salts/metabolism , Biological Transport/drug effects , Cholestasis/chemically induced , Cholestasis/metabolism , Disease Models, Animal , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , PPAR alpha/genetics , Sirtuin 1/genetics
14.
Toxicol Appl Pharmacol ; 381: 114637, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31238046

ABSTRACT

Estrogens and androgens play critical roles during benign prostatic hyperplasia (BPH) development. Estrogen receptors (ERs), androgen receptor (AR) and aromatase, the key conversion enzyme of androgen to estrogen, are thought to be the effective targets for BPH treatment. Bakuchiol (Ba)-containing herb Psoralea corylifolia has been long-termed used for BPH patients in traditional Chinese medicine while the role and regulatory mechanism of Ba involved remain unclear. Human prostatic cell lines WPMY-1 and BPH-1 and oestrodial/testosterone-induced BPH rats were used as the in vitro and in vivo models. Ba significantly inhibited the proliferation of WPMY-1 and BPH-1 cells. In E2/T-induced BPH model, Ba treatment also significantly inhibited the enlargement of prostate, decreased PI values, reduced the thickness of periglanular smooth muscle layer, and down-regulated the expressions of PCNA and smooth muscle cell marker α-SMA, all of which were highly induced in BPH rats. Moreover, the basal and PGE2-induced expressions of aromatase were reduced in Ba-stimulated WPMY-1 cells, while the expression of ERß was highly increased in Ba-stimulated BPH-1 cells, both of which are consistent with the findings in Ba group in vivo. Ba induced ERE activity in BPH-1 cells as E2 did; however, silence of ERß not ERα, blocked Ba-induced ERE activity while E2 still exhibited the significant ERE activity, indicating the regulation of estrogen signaling by Ba is particularly via ERß. In conclusion, by down-regulation of stromal aromatase and up-regulation of epithelial ERß, Ba contributes to the balance of estrogen and androgen signaling and further inhibits BPH development.


Subject(s)
Aromatase/metabolism , Estrogen Receptor beta/metabolism , Phenols/therapeutic use , Prostatic Hyperplasia/drug therapy , Animals , Aromatase/genetics , Cell Line , Cell Proliferation/drug effects , Down-Regulation/drug effects , Estradiol/pharmacology , Estrogen Receptor beta/genetics , Estrogens/pharmacology , Humans , Male , Mice , Phenols/pharmacology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/metabolism , RAW 264.7 Cells , Rats, Wistar , THP-1 Cells , Testosterone/pharmacology , Up-Regulation/drug effects
15.
FASEB J ; 32(11): 5967-5975, 2018 11.
Article in English | MEDLINE | ID: mdl-29792732

ABSTRACT

Metastasis is the main cause of the lethality of prostate cancer. Class I phosphatidylinositol 3-kinases (PI3Ks), which contain 4 isoforms, α, ß, δ, and γ, are known to play important roles in cell growth, migration, invasion, and so on. However, the respective role of each PI3K isoform in cancer cell migration and invasion remains unknown. In a study that aimed to elucidate the respective role of the 4 PI3K isoforms, we investigated the change in migratory and invasive ability of DU145 cells after treatment with each PI3K isoform-specific inhibitor. Both migration and invasion of DU145 cells were potently blocked by each of the PI3Kß inhibitors (GSK2636771 and TGX221) and PI3Kδ inhibitors (CAL101 and IC87114) while not obviously affected by PI3Kα inhibitor BYL719 or PI3Kγ inhibitor AS252424. Furthermore, knocking down PI3Kß or PI3Kδ isoform led to a significant decrease in migration of DU145. The results suggest that PI3Kß and PI3Kδ play key roles in prostate cancer cell migration, while PI3Kα and PI3Kγ might be redundant. Oral administration of GSK2636771 (100 mg/kg) and CAL101 (30 mg/kg) inhibited tumor growth in bone, an experimental model by intratibia injection of DU145 cells, with improved bone structure and bone mineral density analyzed by micro-computed tomography. Tissue staining indicated reduction of metastatic DU145 cells and osteoclasts in the bones of GSK2636771- and CAL101-treated mice compared to the untreated group. In summary, our results indicated the distinct roles of 4 PI3K isoforms in the migration of prostate cancer DU145 cells, and they demonstrated the in vitro and in vivo antimetastatic effect of PI3K-isoform specific inhibitors, most of which are in clinical trials.-Zhang, Z., Liu, J., Wang, Y., Tan, X., Zhao, W., Xing, X., Qiu, Y., Wang, R., Jin, M., Fan, G., Zhang, P., Zhong, Y., Kong, D. Phosphatidylinositol 3-kinase ß and δ isoforms play key roles in metastasis of prostate cancer DU145 cells.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Neoplasm Metastasis , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Integrin beta1/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis/prevention & control , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , X-Ray Microtomography
16.
J Asian Nat Prod Res ; 21(10): 985-991, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29996686

ABSTRACT

Two new labdane-type diterpenes, named viterotulin C (1) and vitexilactone D (2), together with five known diterpenes (3-7), were isolated from the fruits of Vitex trifolia L. var. simplicifolia Cham. Their structures were elucidated by detailed analysis of spectroscopic data. All the compounds were evaluated for their inhibitory effects on nuclear factor-kappa B (NF-κB) pathway in HEK 293 cell line. These compounds presented inhibition on TNF-α-induced NF-κB activation, with inhibition rates ranging from 42.52 ± 10.69% to 68.86 ± 10.76% at the concentration of 50 µM.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Fruit/chemistry , Vitex/chemistry , Anti-Inflammatory Agents/isolation & purification , Diterpenes/isolation & purification , HEK293 Cells , Humans , Molecular Structure , NF-kappa B/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology
17.
J Asian Nat Prod Res ; 21(10): 970-976, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29947250

ABSTRACT

A phytochemical study on the seeds of Cassia obtusifolia was carried out, which finally led to obtain two naphthalenes (1 and 2), two naphthopyrans (3 and 4) and twelve anthraquinones (5-16). The structures of all compounds were established mainly by NMR and MS experiments as well as the necessary chemical evidence. Among them, 1 and 2 (obtusinaphthalensides A and B) were identified to be new naphthalene glycosides.


Subject(s)
Cassia/chemistry , Naphthalenes/isolation & purification , Seeds/chemistry , Anthraquinones/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry
18.
J Proteome Res ; 17(2): 794-803, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29300489

ABSTRACT

Shenmai formula (SM) has been a traditional medicinal remedy for treating cardiovascular diseases in China for 800 years; however, its mechanism of action remains unclear. To explore the mechanism underlying cardioprotective effects of SM, iTRAQ-based proteomic approach was applied to analyze protein of myocardium in rats with myocardial ischemic injury. Upon treatment with SM and its two major components Red ginseng (RG) and Radix Ophiopogonis (OP), 101 differentially expressed proteins were filtered from a total of 712 detected and annotated proteins. They can be classified according to their locations and functions, while most of them are located in intracellular organelle, participating in cellular metabolic process. The functions of them are mostly associated with mitochondrial oxidative phosphorylation/respiration. The differentially expressed proteins were validated by liquid chromatography-tandem mass spectrometry and Western blotting (ATP5D, NDUFB10, TNNC1). Further in vitro experiments found that SM could attenuate hypoxia induced impairment of mitochondrial membrane potential and cellular ATP concentration in neonatal rat ventricular myocytes. Interestingly, the result of quantitative mitochondrial biogenesis assays revealed that SM had dominant positive effects on the maximum respiration, ATP-coupled respiration, and spare capacity of mitochondria in response to hypoxia. Hence, our findings suggest that SM promotes mitochondrial function to protect cardiomyocytes against hypoxia, which provides a possible illustration for conventional botanical therapy on a molecular level.


Subject(s)
Cardiotonic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Mitochondria, Heart/metabolism , Mitochondrial Proteins/isolation & purification , Myocardial Infarction/drug therapy , Proteomics/methods , Animals , Cell Hypoxia , Cerebrovascular Disorders/surgery , Chromatography, Liquid , Coronary Vessels/surgery , Disease Models, Animal , Drug Combinations , Gene Ontology , Male , Medicine, Chinese Traditional , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Mitochondrial Proteins/metabolism , Molecular Sequence Annotation , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Primary Cell Culture , Protein Interaction Mapping , Proteomics/instrumentation , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
19.
J Pharmacol Sci ; 138(1): 1-8, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30236540

ABSTRACT

Androgen-independent prostate cancer (PCa) is a developed tumor derived from the local androgen dependent PCa, which often affects elderly men. Psoralea corylifolia L, a traditional Chinese medicine, has been widely used for PCa treatment as an important part of a common prescription, while the mechanism remains unclear. Our study was aimed to investigate the tumor-inhibitory effect of its main component bakuchiol in androgen-independent PCa cell line PC-3 cells. Bakuchiol significantly suppressed PC-3 cell proliferation and migration; the expressions of PCNA and MMP-9 were consistently down regulated as well. Meanwhile, both the constitutive and LPS-induced NF-κB activation were significantly inhibited by bakuchiol. The inhibitory effects of bakuchiol on cell proliferation, migration and invasion were recovered when LPS were added together with bakuchiol. SiRNA against androgen receptor (AR) or estrogen receptor ß (ERß) were transfected and the regulation of bakuchiol-suppressed proliferation, invasion, NF-κB signaling and MMP-9 secretion in response to LPS were blocked. Taken together, our data demonstrated that bakuchiol inactivated NF-κB signaling via AR and ERß, which contributes to inhibition of PC-3 cell proliferation and migration, indicating that bakuchiol is one of the key component from P. corylifolia L for PCa treatment and has a potential as anti-prostate cancer drug candidates.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Estrogen Receptor beta/physiology , NF-kappa B/metabolism , Phenols/pharmacology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/drug effects , Estrogen Receptor beta/genetics , Gene Expression/drug effects , Gene Expression/genetics , Humans , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Phenols/isolation & purification , Phenols/therapeutic use , Phytotherapy , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Prostatic Neoplasms/drug therapy , Psoralea/chemistry , RNA, Small Interfering , Receptors, Androgen/genetics
20.
Kidney Blood Press Res ; 43(1): 12-24, 2018.
Article in English | MEDLINE | ID: mdl-29393225

ABSTRACT

BACKGROUND/AIMS: High blood pressure is a major risk factor for chronic kidney disease. Currently, single-target anti-hypertensive drugs are not designed for high blood pressure-related organ damages. Danhong injection (DHI), made from the aqueous extracts of Radix Salviae miltiorrhizae and Flos Carthamus tinctorius, has various pharmacological effects, including BP lowering in SHR, mediated by the reduction of vascular remodeling and the up-regulation of Kallikrein-kinin system published recently by our team, yet if it renders renal protection remains unknown. The current study demonstrated a protective role of DHI in renal injury caused by hypertension and identified its molecular targets in the kidney of spontaneously hypertensive rats (SHR). METHODS: Adult SHR and age/gender-matched normotensive Wistar-Kyoto (WKY) rats were treated with DHI, Losartan, or saline for 4 weeks. Serum levels of Creatinine (CRE), Micro-albumin (mAlb), Beta2-microglobulin (ß2-MG), and Uric acid (UA) were detected using ELISA kits. Renal pathology was examined by hematoxylin and Eosin (H&E) stains. Microarray analysis was performed on kidney tissues, and gene expression changes were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses. RESULTS: Renal histopathological scores showed that SHR exhibited serious kidney injury compared to normotensive WKY rats. The intervention with DHI potently suppressed the renal injury biomarker (KIM-1) and kidney lesions compared to the untreated hypertensive subjects. Microarray analysis revealed that among the 124 genes that were differentially expressed by DHI treatment in SHR kidney, down-regulation of renal myoglobin (Mb) gene was the most prominent and was subsequently confirmed by qRT-PCR and Western blot analysis. CONCLUSION: Hypertension-induced renal injury in SHR may be alleviated by DHI in part by local suppression of Kidney injury molecule-1 and down-regulation of Myoglobin. However, if this effect is independent of the known anti-hypertensive action of DHI in blood vessel remains to be determined.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hypertension/complications , Kidney/injuries , Myoglobin/metabolism , Animals , Cell Adhesion Molecules/drug effects , Down-Regulation/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Gene Expression Regulation/drug effects , Losartan/therapeutic use , Rats , Rats, Inbred SHR , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL