Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Environ Res ; 220: 115151, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36584845

ABSTRACT

Ternary CuO/AgO/FSZr photocatalysts were fabricated via the hydrothermal and electrochemical methods with three different CuO loading (1, 3 and 5 wt%), indicated as 1CuO/AgO/FSZr, 3CuO/AgO/FSZr and 5CuO/AgO/FSZr. The photocatalytic reaction was tested towards simultaneous chromium (VI) photoreduction and p-cresol photooxidation and the performance in order as follow: 3CuO/AgO/FSZr > 5CuO/AgO/FSZr > 1CuO/AgO/FSZr > AgO/FSZr > FSZr. CuO/AgO/FSZr photocatalysts showed an improvement in photocatalytic activity compared to AgO/FSZr and FSZr due to the reduction potential of chromium (VI) aligned closer to the conduction band of CuO and provided abundant free active electrons (e-) and holes (h+) with efficient transportation and migration. Interestingly, the 3CuO/AgO/FSZr was established as the best photocatalyst with 98% reduction of chromium (VI) and 83% oxidation of p-cresol simultaneously, owing to its strong corporation between the metal oxides and support and higher total pore volume. The Langmuir-Hinshelwood model were employed for kinetics which followed the pseudo-first-order kinetics model well. Based on the simultaneous photocatalytic mechanism, chromium (VI) and p-cresol were directly reduced and oxidized by e- and h+, respectively. The response surface methodology (RSM) discovered that the quadratic term initial concentration of chromium (VI) is the main significant factor in photocatalytic performance. The optimum parameters for simultaneous photoredox of chromium (VI) and p-cresol predicted from RSM are 9.6 mg L-1 of chromium (VI) concentration, 9.8 mg L-1 of p-cresol concentration and 0.32 g L-1 of catalyst dosage. Under these conditions the error between the predicted and experimental values is only 3.7%. The 3CuO/AgO/FSZr sustained the photocatalytic performance after reused for five cycles and could oxidized various organic pollutants as well as reduced chromium (VI) simultaneously.


Subject(s)
Chromium , Silicon Dioxide , Oxidation-Reduction , Catalysis
2.
Environ Res ; 209: 112748, 2022 06.
Article in English | MEDLINE | ID: mdl-35101397

ABSTRACT

With the tremendous development of the economy and industry, the pollution of water is becoming more serious due to the excessive chemical wastes that need to remove thru reduction or oxidation reactions. Simultaneous removal of dual pollutants via photocatalytic redox reaction has been tremendously explored in the last five years due to effective decontamination of pollutants compared to a single pollutants system. In a photocatalysis mechanism, the holes in the valence band can remarkably promote the oxidation of a pollutant. At the same time, photoexcited electrons are also consumed for the reduction reaction. The synergistic between the reduction and oxidation inhibits the recombination of electron-hole pairs extending their lifetime. In this review, the binary pollutants that selectively removed via photocatalysis reduction or oxidation are classified according to heavy metal-organic pollutant (HM/OP), heavy metal-heavy metal (HM/HM) and organic-organic pollutants (OP/OP). The intrinsic between the pollutants was explained in three different mechanisms including inhibition of electron-hole recombination, ligand to metal charge transfer and electrostatic attraction. Several strategies for the enhancement of this treatment method which are designation of catalysts, pH of mixed pollutants and addition of additive were discussed. This review offers a recent perspective on the development of photocatalysis system for industrial applications.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Water Purification , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
3.
Environ Res ; 211: 113069, 2022 08.
Article in English | MEDLINE | ID: mdl-35300961

ABSTRACT

A novel Z-scheme titania loaded on fibrous silica ceria (Ti-FSC) was triumphantly fabricated via hydrothermal followed by electrolysis method and evaluated for the visible-light degradation of ciprofloxacin (CIP). Noticeably, Ti-FSC exhibits as an efficient photocatalyst for CIP photodegradation with 95% as followed by titania loaded on fibrous silica (Ti-FS) (68%), Ti-CeO2 (35%), FSC (47%), FS (22%), and CeO2 (17%). The combination of the inherent merits of Ti loaded on FSC is able to realize the crucial role of Ce in harnessing the high dispersion of Ti, which could beneficial for improving the performance proven by XRD, FESEM, TEM and FTIR. Consequently, high dispersion of Ti on FSC has worthwhile towards the interaction of the Si-O-Ti, Ce-O-Ti, and Si-O-Ti, which could enhance the CIP photodegradation by providing more surface defects, narrowing the band gap, improving electron-hole separation and suppressing electron-hole recombination that revealed by XPS, UV-vis/DRS, Nyquist plots and PL studies, respectively. The scavenger study revealed that the controlling species in the system was hydroxyl radical and holes. A potential Z-scheme heterojunction mechanism for Ti-FSC was deduced from the band structure analysis. The possible photodegradation pathway was proposed based on GCMS analysis. Besides, the acceptable reusability, which exceeded 90% of degradation indicated the great application potential of Z-scheme Ti-FSC in wastewater treatment and others application.


Subject(s)
Ciprofloxacin , Silicon Dioxide , Catalysis , Titanium
4.
Environ Res ; 210: 112975, 2022 07.
Article in English | MEDLINE | ID: mdl-35196501

ABSTRACT

Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents , Electrochemical Techniques , Oxidation-Reduction , Pharmaceutical Preparations , Wastewater/analysis , Water Pollutants, Chemical/analysis
5.
J Environ Manage ; 227: 34-43, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30172157

ABSTRACT

Fibrous silica-titania (FST) catalysts were synthesized by microemulsion followed by silica seed-crystal crystallization methods under various molar ratios of toluene to water (T/W). The catalysts were characterized by XRD, UV-DRS, FESEM, TEM, AFM, N2 adsorption-desorption, FTIR, and ESR. The results revealed that altering the T/W ratio affected the growth of the silica and titania and led to different size, fiber density, silica-titania structure, and number of hydroxyl groups, as well as oxygen vacancies in the FSTs, which altered their behavior toward subsequent application. Photodegradation of ibuprofen (IBP) are in the following order: FST(6:1) (90%) > FST(5:1) (84%) > FST(7:1) (79%) > commercial TiO2 (67%). A kinetics study using Langmuir-Hinshelwood model illustrated that the photodegradation followed the pseudo-first-order and adsorption was the rate-limiting step. Optimization by response surface methodology (RSM) showed that the pH, initial concentration, and catalyst dosage were the remarkable parameters in photodegradation of IBP. The FST (6:1) maintained its photocatalytic activities for up to five cycles reaction without serious catalyst deactivation, and was also able to degrade other endocrine-disrupting chemicals, indicating its potential use for the treatment of those chemicals in wastewater.


Subject(s)
Ibuprofen , Photolysis , Catalysis , Silicon Dioxide , Titanium
6.
Chemosphere ; 286(Pt 1): 131651, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34346345

ABSTRACT

Nanostructured photocatalysts commonly offered opportunities to solve issues scrutinized with the environmental challenges caused by steep population growth and rapid urbanization. This photocatalyst is a controllable characteristic, which can provide humans with a clean and sustainable ecosystem. Over the last decades, one of the current thriving research focuses on visible-light-driven CeO2-based photocatalysts due to their superior characteristics, including unique fluorite-type structure, rigid framework, and facile reducing oxidizing properties of cerium's tetravalent (Ce4+) and trivalent (Ce3+) valence states. Notwithstanding, owing to its inherent wide energy gap, the solar energy utilization efficiency is low, which limits its application in wastewater treatment. Numerous modifications of CeO2 have been employed to enhance photodegradation performances, such as metals and non-metals doping, adding support materials, and coupling with another semiconductor. Besides, all these doping will form a different heterojunction and show a different way of electron-hole migration. Compared to conventional heterojunction, advanced heterojunction types such as p-n heterojunction, Z-scheme, Schottky junction, and surface plasmon resonance effect exhibit superior performance for degradation owing to their excellent charge carrier separation, and the reaction occurs at a relatively higher redox potential. This review attends to providing deep insights on heterojunction mechanisms and the latest progress on photodegradation of various contaminants in wastewater using CeO2-based photocatalysts. Hence, making the CeO2 photocatalyst more foresee and promising to further development and research.


Subject(s)
Environmental Pollutants , Water Purification , Catalysis , Ecosystem , Humans , Photolysis
7.
Chemosphere ; 308(Pt 3): 136456, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36150498

ABSTRACT

The coexistence of pharmaceutical compounds and heavy metals in the aquatic environment has resulted in complications in the treatment process and thus, causing uproar among the citizens. The radical-based photocatalysis technology has aroused as an excellent method to eliminate both heavy metal and pharmaceutical compounds in the water. Herein, reported the utilization of the microemulsion technique for the preparation of nanoporous fibrous silica-molybdenum oxide (FSMo) towards simultaneous photocatalytic abatement of hexavalent chromium (Cr(VI)) and tetracycline (TC). The FESEM analysis showed the spherical morphology of the FSMo catalyst with dendrimeric silica fiber. The synthesized FSMo catalyst exhibited narrowed bandgap, high crystallinity, and well Mo element dispersion for enhanced photo-redox of Cr(VI) and TC. Remarkably, simultaneous remediation of the Cr(VI) and TC over FSMo demonstrated superior photocatalytic efficiency, 69% and 75%, respectively, than in the individual system, possibly due to the effective separation of photoinduced charges. The introduction of the Mo element to the silica framework via microemulsion technique demonstrated better dispersion of Mo compared to the incipient wetness impregnation method and thus, yielded higher photocatalytic activity towards simultaneous removal of TC and Cr(VI). Besides, quenching experiments revealed the electrons and holes as the active species that play a dominant role in the simultaneous photo-redox of Cr(VI) and TC. Lastly, the FSMo catalyst demonstrated high stability after four continuous cycles of simultaneous photocatalysis reactions, implying its potential as a suitable material for practical wastewater treatments.


Subject(s)
Environmental Pollutants , Nanoparticles , Catalysis , Chromium/analysis , Light , Molybdenum , Oxides , Pharmaceutical Preparations , Silicon Dioxide , Tetracycline , Wastewater , Water Pollution, Chemical
8.
Environ Pollut ; 285: 117490, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34091265

ABSTRACT

The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.


Subject(s)
Silicon Dioxide , Water Pollutants, Chemical , Chromium , Cresols , Oxidation-Reduction , Zirconium
9.
J Hazard Mater ; 414: 125524, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33647620

ABSTRACT

In this work, fibrous silica-titania (FST) was successfully prepared by the microemulsion method prior to the addition of three types of carbonaceous materials: graphitic-carbon nitride, g-C3N4 (CN), graphene nanoplatelets (GN), and multi-wall carbon nanotubes, MWCNT (CNT), via a solid-state microwave irradiation technique. The catalysts were characterized using XRD, FESEM, TEM, FTIR, UV-Vis DRS, N2 adsorption-desorption, XPS and ESR, while their photoactivity was examined on the degradation of toxic 2-chlorophenol (2-CP). The result demonstrated that the initial reaction rate was in the following order: CNFST (5.1 × 10-3 mM min-1) > GNFST (2.5 × 10-3 mM min-1) > CNTFST (2.3 × 10-3 mM min-1). The best performance was due to the polymeric structure of g-C3N4 with a good dispersion of C and N on the surface FST. This dispersion contributed towards an appropriate quantity of defect sites, as a consequence of the greater interaction between g-C3N4 and the FST support, that led to narrowed of band gap energy (2.98 eV to 2.10 eV). The effect of scavenger and ESR studies confirmed that the photodegradation over CNFST occurred via a Z-scheme mechanism. It is noteworthy that the addition of green carbonaceous materials on the FST markedly enhanced the photodegradation of toxic 2-CP.

10.
J Hazard Mater ; 401: 123277, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33113710

ABSTRACT

Multiple contaminants including heavy metals and phenolic compounds are normally co-exist in wastewater, which caused the treatment process is rather complicated. Herein, the synergistic photoredox of Cr(VI) and p-cresol (pC) by innovative fibrous silica zirconia (FSZr) photocatalyst was reported. The high surface area of FSZr comprised of microspheres with a bicontinuous concentric lamella structure morphology consisted of silica, while its core consisted of ZrO2 structure. The rearrangement of FSZr framework increased the crystallinity, formed Si-O-Zr bonds and narrowed the band gap of ZrO2 for enhanced of photoredox of Cr(VI) and pC. Compared to the reaction, the photoredox efficiency of FSZr for removing Cr(VI) and pC in simultaneous system was found to be 96 % and 59 %, respectively which are higher than that in its single system owing to the efficient electron-hole charge separation. Phenolic compound with high degree of electron donating group gave beneficial effect to photoreduction of Cr(VI). Consequently, a proposed mechanism involving multi-photoredox pathway were proposed based on photoredox reaction and scavengers studies. FSZr sustained the simultaneous photoredox activities after five runs demonstrating its possibility to be use in the wastewater treatment of various pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL