Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 60(19): 14866-14871, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34533931

ABSTRACT

The mild reaction of the preorganized silsesquioxane precursor with Mn(II) acetate under ambient conditions results in a mixed-valent {MnII6MnIII4} nanocage (SD/Mn10) which is protected by both acyclic trimer [Si3] and cyclic tetramer [Si4]. Serendipitous capture of atmospheric CO2 as a µ5-carbonate anion placed at the center supports the formation of the cluster. The magnetic analysis reveals the strong antiferromagnetic interactions between Mn ions. Moreover, the drop-casting film of SD/Mn10 shows photoelectric activity indicating its great potential as a semiconductor for photoelectric conversion applications.

2.
Nanoscale Adv ; 4(11): 2494-2500, 2022 May 31.
Article in English | MEDLINE | ID: mdl-36134131

ABSTRACT

By using Mie resonance coupling effects, low-loss silicon particles as receiving or transmitting antennas can strongly localize the electromagnetic field. Enhanced extraordinary optical transmission (EEOT) is generated by placing two such silicon particles symmetrically on both sides of subwavelength hole arrays in the terahertz (THz) region. When the hole radius r is 17 times smaller than the resonance wavelength λ (r/λ = 0.06), the enhancement factors of the resonator-hole and the resonator-resonator coupling structures are 154- and 629-fold compared to that of the hole-only structure, respectively. The current distribution, magnetic field and Poynting vector are numerically simulated to reveal the mechanism of the proposed structure. Moreover, the Mie resonance coupling and the induced THz EEOT can be tuned in a wide frequency range. Our results provide a reference for the miniaturization of THz systems.

3.
ACS Omega ; 5(6): 3000-3005, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32095723

ABSTRACT

In this work, we propose using periodic Au nanoparticles (NPs) in indium selenide-based optoelectronic devices to tune the optical absorption of indium selenide. Electromagnetic simulations show that optical absorption of indium selenide can be manipulated by tuning plasmonic resonance. The effect on the plasmonic resonance of the size, period of NPs, the thickness of silicon oxide, and the insulator spacer is systematically analyzed. A high absorption enhancement over the visible spectrum is achieved through systematic optimization of nanostructures.

4.
ACS Nano ; 14(3): 2808-2816, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32074454

ABSTRACT

Chiral nanophotonic devices are promising candidates for chiral molecule sensing, polarization of diverse nanophotonics, and display technologies. Active chiral nanophotonic devices, where the optical chirality can be controlled by an external stimulus has triggered great research interest. However, efficient modulation of the optical chirality has been challenging. Here, we demonstrate switching of the extrinsic chirality by applied magnetic fields in a magnetoplasmonic metasurface device based on a magneto-optical oxide material, Ce1Y2Fe5O12 (Ce:YIG). Due to the low optical loss and strong magneto-optical effect of Ce:YIG, we experimentally demonstrated giant and continuous far-field circular dichroism (CD) modulation by applied magnetic fields from -0.6 ± 0.2° to +1.9 ± 0.1° at 950 nm wavelength under glancing incident conditions. The far-field CD modulation is due to both magneto-optical circular dichroism and near-field modulation of the superchiral fields by applied magnetic fields. Finally, we demonstrate magnetic-field-tunable chiral imaging in millimeter-scale magnetoplasmonic metasurfaces fabricated using self-assembly.

SELECTION OF CITATIONS
SEARCH DETAIL