Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 29(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339466

ABSTRACT

Breast cancer (BC) is the most common cancer in women, and is characterized by its histological and molecular heterogeneity. Luminal BC is an estrogen receptor-positive subtype, with varied clinical courses. Although BC patients are eligible for hormone therapy, both early and late relapses still occur, and thus there is a demand for new cytotoxic and selective treatment strategies for these patients. In the present study, inspired by the structure of phenylsulfonylpiperazine, a series of 20 derivatives were tested in bioassays against MCF7, MDA-MB-231 and MDA-MB-453 BC cells to discover new hit compounds. After 48 h of treatment, 12 derivatives impaired cell viability and presented significant IC50 values against at least one of the tumor lineages. Overall, the luminal BC cell line MCF7 was more sensitive to treatments. Compound 3, (4-(1H-tetrazol-1-yl)phenyl)(4-((4-chlorophenyl)sulfonyl)piperazin-1-yl)methanone, was the most promising, with IC50 = 4.48 µM and selective index (SI) = 35.6 in MCF7 cells. Compound 3 also presented significant antimigratory and antiproliferative activities against luminal BC cells, possibly by affecting the expression of genes involved in the epithelial-mesenchymal transition mechanism, upregulating E-Cadherin transcripts (CDH1). Our findings suggest that phenylsulfonylpiperazine derivatives are potential candidates for the development of new therapies, especially those targeting luminal BC.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cell Proliferation , Piperazines , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Piperazines/pharmacology , Piperazines/chemistry , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , MCF-7 Cells , Cell Line, Tumor , Cell Survival/drug effects , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Structure-Activity Relationship , Drug Screening Assays, Antitumor
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047296

ABSTRACT

Glyphosate (GLY) was developed in the early 1970s and has become the most used broad-spectrum herbicide in the world so far. Its main metabolite is aminomethylphosphonic acid (AMPA), and the accumulation of GLY and its derivative compounds raises some concerns regarding possible health outcomes. In this study, we aimed to evaluate the effects of GLY and AMPA on prostate cell lines by evaluating cell viability, proliferation, gene and protein expression, and cellular pathways involved in the response to oxidative stress. Our results indicated that GLY and AMPA reduced the cell viability of tumorigenic and non-tumorigenic prostate cell lines only at higher concentrations (10 mM GLY and 20 mM AMPA). In contrast, both compounds increased the clonogenicity of non-tumorigenic PNT2 cells, mainly at concentrations below the IC50 (5 mM GLY and 10 mM AMPA). Moreover, treatment of non-tumorigenic cells with low concentrations of GLY or AMPA for 48 h increased GSTM3 expression at both mRNA and protein levels. In contrast, the treatments decrease the GST activity and induced an increase in oxidative stress, mainly at lower concentrations. Therefore, both compounds can cause cellular damage even at lower concentrations in non-tumorigenic PNT2 cells, mainly affecting cell proliferation and oxidative stress.


Subject(s)
Glutathione Transferase , Herbicides , Male , Humans , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Prostate/metabolism , Herbicides/pharmacology , Herbicides/metabolism , Tetrazoles/pharmacology , Glyphosate
3.
J Inorg Biochem ; 255: 112524, 2024 06.
Article in English | MEDLINE | ID: mdl-38507993

ABSTRACT

Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Triple Negative Breast Neoplasms , Humans , Copper/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Hydrazines , Hydrolysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Adenosine Diphosphate , Crystallography, X-Ray
4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37895937

ABSTRACT

Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.

5.
Cells ; 10(9)2021 08 30.
Article in English | MEDLINE | ID: mdl-34571894

ABSTRACT

Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.


Subject(s)
Annexin A1/metabolism , Immunity/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Annexin A1/genetics , Autocrine Communication , Humans , Neoplasms/metabolism , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL