Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 150: 240-250, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29288905

ABSTRACT

The dihydroxybenzenes are widely found in wastewater and usually more than one of these aromatic compounds co-exist as pollutants of water resources. The current study investigated and compared the removal efficiency of hydroquinone, catechol and resorcinol in binary substrate systems under saline conditions by Penicillium chrysogenum var. halophenolicum, to clarify the potential of this fungal strain to degrade these aromatic compounds. Since P. chrysogenum is a known penicillin producer, biosynthetic penicillin genes were examined and antibiotic was quantified in mono and binary dihydroxybenzene systems to elucidate the carbon flux of dihydroxybenzenes metabolism in the P. chrysogenum var. halophenolicum to the secondary metabolism. In binary substrate systems, the three assayed dihydroxybenzene compounds were found to be co-metabolized by fungal strain. The fungal strain preferentially degraded hydroquinone and catechol. Resorcinol was degraded slower and supports higher antibiotic titers than either catechol or hydroquinone. Dihydroxybenzenes were faster removed in mixtures compared to mono substrate systems, except for the case of hydroquinone. In this context, the expression of penicillin biosynthetic gene cluster was not related to the removal of dihydroxybenzenes. Penicillin production was triggered simultaneously or after dihydroxybenzene degradation, but penicillin yields, under these conditions, did not compromise dihydroxybenzene biological treatment. To investigate the decrease in dihydroxybenzenes toxicity due to the fungal activity, viability tests with human colon cancer cells (HCT116) and DNA damage by alkaline comet assays were performed. For all the conditions assays, a decrease in saline medium toxicity was observed, indicating its potential as detoxification agent.


Subject(s)
Catechols/analysis , Hydroquinones/analysis , Penicillium chrysogenum/metabolism , Resorcinols/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Catechols/toxicity , Cell Survival/drug effects , DNA Damage , Genes, Fungal , HCT116 Cells , Humans , Hydroquinones/toxicity , Multigene Family , Penicillins/biosynthesis , Penicillium chrysogenum/genetics , Resorcinols/toxicity , Salinity , Secondary Metabolism , Water Pollutants, Chemical/toxicity
2.
Environ Technol ; 33(4-6): 677-86, 2012.
Article in English | MEDLINE | ID: mdl-22629643

ABSTRACT

The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/metabolism , Penicillins/biosynthesis , Penicillium chrysogenum/classification , Penicillium chrysogenum/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , 2,4-Dichlorophenoxyacetic Acid/isolation & purification , Anti-Bacterial Agents/biosynthesis , Biodegradation, Environmental , Herbicides/isolation & purification , Herbicides/metabolism , Salinity , Species Specificity , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL