Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Phys ; 138(5): 054306, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23406118

ABSTRACT

We present theoretical absolute charge exchange cross sections for multiply charged cations interacting with the Polycyclic Aromatic Hydrocarbon (PAH) molecules pyrene C(14)H(10), coronene C(24)H(12), or circumcoronene C(54)H(18). These planar, nearly circular, PAHs are modelled as conducting, infinitely thin, and perfectly circular discs, which are randomly oriented with respect to straight line ion trajectories. We present the analytical solution for the potential energy surface experienced by an electron in the field of such a charged disc and a point-charge at an arbitrary position. The location and height of the corresponding potential energy barrier from this simple model are in close agreement with those from much more computationally demanding Density Functional Theory (DFT) calculations in a number of test cases. The model results compare favourably with available experimental data on single- and multiple electron transfer reactions and we demonstrate that it is important to include the orientation dependent polarizabilities of the molecules (model discs) in particular for the larger PAHs. PAH ionization energy sequences from DFT are tabulated and used as model inputs. Absolute cross sections for the ionization of PAH molecules, and PAH ionization energies such as the ones presented here may be useful when considering the roles of PAHs and their ions in, e.g., interstellar chemistry, stellar atmospheres, and in related photoabsorption and photoemission spectroscopies.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Compounds/chemistry , Pyrenes/chemistry , Electron Transport , Ions/chemistry , Models, Molecular , Quantum Theory
2.
Nat Commun ; 11(1): 4667, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938938

ABSTRACT

The pyruvate dehydrogenase complex (PDC) is a multienzyme complex central to aerobic respiration, connecting glycolysis to mitochondrial oxidation of pyruvate. Similar to the E3-binding protein (E3BP) of mammalian PDC, PX selectively recruits E3 to the fungal PDC, but its divergent sequence suggests a distinct structural mechanism. Here, we report reconstructions of PDC from the filamentous fungus Neurospora crassa by cryo-electron microscopy, where we find protein X (PX) interior to the PDC core as opposed to substituting E2 core subunits as in mammals. Steric occlusion limits PX binding, resulting in predominantly tetrahedral symmetry, explaining previous observations in Saccharomyces cerevisiae. The PX-binding site is conserved in (and specific to) fungi, and complements possible C-terminal binding motifs in PX that are absent in mammalian E3BP. Consideration of multiple symmetries thus reveals a differential structural basis for E3BP-like function in fungal PDC.


Subject(s)
Fungal Proteins/chemistry , Neurospora crassa/chemistry , Pyruvate Dehydrogenase Complex/chemistry , Binding Sites , Cryoelectron Microscopy , Fungal Proteins/metabolism , Models, Molecular , Protein Conformation , Protein Domains , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL