Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Publication year range
1.
Faraday Discuss ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39390961

ABSTRACT

Octacalcium phosphate (OCP, Ca8(PO4)4(HPO4)2·5H2O) is a notable calcium phosphate due to its biocompatibility, making it a widely studied material for bone substitution. It is known to be a precursor of bone mineral, but its role in biomineralisation remains unclear. While the structure of OCP has been the subject of thorough investigations (including using Rietveld refinements of X-ray diffraction data, and NMR crystallography studies), important questions regarding the symmetry and H-bonding network in the material remain. In this study, it is shown that OCP undergoes a lowering of symmetry below 200 K, evidenced by 1H, 17O, 31P and 43Ca solid-state NMR experiments. Using ab initio molecular-dynamics (MD) simulations and gauge including projected augmented wave (GIPAW) DFT calculations of NMR parameters, the presence of rapid motions of the water molecules in the crystal cell at room temperature is proved. This information leads to an improved description of the OCP structure at both low and ambient temperatures, and helps explain long-standing issues of symmetry. Remaining challenges related to the understanding of the structure of OCP are then discussed.

2.
Phys Chem Chem Phys ; 25(8): 6044-6049, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36281524

ABSTRACT

Spin-lattice relaxation rate (R1) measurements are commonly used to characterize protein dynamics. However, the time needed to collect the data can be quite long due to long relaxation times of the low-gamma nuclei, especially in the solid state. We present a method to collect backbone heavy atom relaxation data by nesting the collection of datasets in the solid state. This method results in a factor of 2 to 2.5 times faster data acquisition for backbone R1 relaxation data for the 13C and 15N sites of proteins.

3.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37171196

ABSTRACT

Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with fast MAS, we have developed a low-order correlation in Liouville space model based on the work of Dumez et al. (J. Chem. Phys. 33, 224501, 2010). Specifically, we introduce a new method for basis set selection, which accounts for the resonance-offset dependence at fast MAS. Furthermore, we consider the necessity of including chemical shift, both isotropic and anisotropic, in the modeling of spin diffusion. Using this model, we explore how different experimental factors change the nature of spin diffusion. Then, we show case studies to exemplify the issues that arise in using spin diffusion techniques at fast spinning. We show that the efficiency of polarization transfer via spin diffusion occurring within a deuterated and 100% back-exchanged protein sample at 60 kHz MAS is almost entirely dependent on resonance offset. We additionally identify temperature-dependent magnetization transfer in beta-aspartyl L-alanine, which could be explained by the influence of an incoherent relaxation-based nuclear Overhauser effect.

4.
Angew Chem Int Ed Engl ; 62(28): e202302602, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37027005

ABSTRACT

We report the modulation of reactivity of nitrogen dioxide (NO2 ) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl- ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl- to give nitrosyl chloride (NOCl) and NO3 - anions. A high dynamic uptake of 6.58 mmol g-1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g-1 . The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.

5.
Phys Chem Chem Phys ; 24(36): 22333, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36098353

ABSTRACT

Correction for 'Optimisation of 1H PMLG homonuclear decoupling at 60 kHz MAS to enable 15N-1H through-bond heteronuclear correlation solid-state NMR spectroscopy' by Jacqueline Tognetti et al., Phys. Chem. Chem. Phys., 2022, 24, 20258-20273, https://doi.org/10.1039/D2CP01041K.

6.
Phys Chem Chem Phys ; 24(34): 20258-20273, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975627

ABSTRACT

The Lee-Goldburg condition for homonuclear decoupling in 1H magic-angle spinning (MAS) solid-state NMR sets the angle θ, corresponding to arctan of the ratio of the rf nutation frequency, ν1, to the rf offset, to be the magic angle, θm, equal to tan-1(√2) = 54.7°. At 60 kHz MAS, we report enhanced decoupling compared to MAS alone in a 1H spectrum of 15N-glycine with at θ = 30° for a ν1 of ∼100 kHz at a 1H Larmor frequency, ν0, of 500 MHz and 1 GHz, corresponding to a high chemical shift scaling factor (λCS) of 0.82. At 1 GHz, we also demonstrate enhanced decoupling compared to 60 kHz MAS alone for a lower ν1 of 51 kHz, i.e., a case where the nutation frequency is less than the MAS frequency, with θ = 18°, λCS = 0.92. The ratio of the rotor period to the decoupling cycle time, Ψ = τr/τc, is in the range 0.53 to 0.61. Windowed decoupling using the optimised parameters for a ν1 of ∼100 kHz also gives good performance in a 1H spin-echo experiment, enabling implementation in a 1H-detected 15N-1H cross polarisation (CP)-refocused INEPT heteronuclear correlation NMR experiment. Specifically, initial 15N transverse magnetisation as generated by 1H-15N CP is transferred back to 1H using a refocused INEPT pulse sequence employing windowed 1H decoupling. Such an approach ensures the observation of through-bond N-H connectivities. For 15N-glycine, while the CP-refocused INEPT experiment has a lower sensitivity (∼50%) as compared to a double CP experiment (with a 200 µs 15N to 1H CP contact time), there is selectivity for the directly bonded NH3+ moiety, while intensity is observed for the CH21H resonances in the double CP experiment. Two-dimensional 15N-1H correlation MAS NMR spectra are presented for the dipeptide ß-AspAla and the pharmaceutical cimetidine at 60 kHz MAS, both at natural isotopic abundance. For the dipeptide ß-AspAla, different build-up dependence on the first spin-echo duration is observed for the NH and NH3+ moieties demonstrating that the experiment could be used to distinguish resonances for different NHx groups.


Subject(s)
Glycine , Magnetic Resonance Imaging , Dipeptides , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods
7.
Magn Reson Chem ; 58(5): 445-465, 2020 05.
Article in English | MEDLINE | ID: mdl-31691361

ABSTRACT

Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Protein Structure, Tertiary
8.
Phys Chem Chem Phys ; 19(38): 25949-25960, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28944393

ABSTRACT

This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.

9.
Phys Chem Chem Phys ; 18(44): 30696-30704, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27791210

ABSTRACT

Dynamic nuclear polarization exploits electron spin polarization to boost signal-to-noise in magic-angle-spinning (MAS) NMR, creating new opportunities in materials science, structural biology, and metabolomics studies. Since protein NMR spectra recorded under DNP conditions can show improved spectral resolution at 180-200 K compared to 110 K, we investigate the effects of AMUPol and various deuterated TOTAPOL isotopologues on sensitivity and spectral resolution at these temperatures, using proline and reproducibly prepared SH3 domain samples. The TOTAPOL deuteration pattern is optimized for protein DNP MAS NMR, and signal-to-noise per unit time measurements demonstrate the high value of TOTAPOL isotopologues for Protein DNP MAS NMR at 180-200 K. The combined effects of enhancement, depolarization, and proton longitudinal relaxation are surprisingly sample-specific. At 200 K, DNP on SH3 domain standard samples yields a 15-fold increase in signal-to-noise over a sample without radicals. 2D and 3D NCACX/NCOCX spectra were recorded at 200 K within 1 and 13 hours, respectively. Decreasing enhancements with increasing 2H-content at the CH2 sites of the TEMPO rings in CD3-TOTAPOL highlight the importance of protons in a sphere of 4-6 Å around the nitroxyl group, presumably for polarization pickup from electron spins.

10.
J Biomol NMR ; 61(2): 161-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25663049

ABSTRACT

The use of small rotors capable of very fast magic-angle spinning (MAS) in conjunction with proton dilution by perdeuteration and partial reprotonation at exchangeable sites has enabled the acquisition of resolved, proton detected, solid-state NMR spectra on samples of biological macromolecules. The ability to detect the high-gamma protons, instead of carbons or nitrogens, increases sensitivity. In order to achieve sufficient resolution of the amide proton signals, rotors must be spun at the maximum rate possible given their size and the proton back-exchange percentage tuned. Here we investigate the optimal proton back-exchange ratio for triply labeled SH3 at 40 kHz MAS. We find that spectra acquired on 60 % back-exchanged samples in 1.9 mm rotors have similar resolution at 40 kHz MAS as spectra of 100 % back-exchanged samples in 1.3 mm rotors spinning at 60 kHz MAS, and for (H)NH 2D and (H)CNH 3D spectra, show 10-20 % higher sensitivity. For 100 % back-exchanged samples, the sensitivity in 1.9 mm rotors is superior by a factor of 1.9 in (H)NH and 1.8 in (H)CNH spectra but at lower resolution. For (H)C(C)NH experiments with a carbon-carbon mixing period, this sensitivity gain is lost due to shorter relaxation times and less efficient transfer steps. We present a detailed study on the sensitivity of these types of experiments for both types of rotors, which should enable experimentalists to make an informed decision about which type of rotor is best for specific applications.


Subject(s)
Multiprotein Complexes/analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/analysis , Proton Magnetic Resonance Spectroscopy/methods , Carbon Isotopes/chemistry , Deuterium/chemistry , Multiprotein Complexes/chemistry , Nitrogen Isotopes/chemistry , Proteins/chemistry , Sensitivity and Specificity
11.
Nat Methods ; 9(12): 1212-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23142870

ABSTRACT

Membrane proteins are largely underrepresented among available atomic-resolution structures. The use of detergents in protein purification procedures hinders the formation of well-ordered crystals for X-ray crystallography and leads to slower molecular tumbling, impeding the application of solution-state NMR. Solid-state magic-angle spinning NMR spectroscopy is an emerging method for membrane-protein structural biology that can overcome these technical problems. Here we present the solid-state NMR structure of the transmembrane domain of the Yersinia enterocolitica adhesin A (YadA). The sample was derived from crystallization trials that yielded only poorly diffracting microcrystals. We solved the structure using a single, uniformly (13)C- and (15)N-labeled sample. In addition, solid-state NMR allowed us to acquire information on the flexibility and mobility of parts of the structure, which, in combination with evolutionary conservation information, presents new insights into the autotransport mechanism of YadA.


Subject(s)
Adhesins, Bacterial/chemistry , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Crystallization , Models, Molecular
12.
J Am Chem Soc ; 136(35): 12489-97, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25102442

ABSTRACT

Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.


Subject(s)
Hydrogen/analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Protons , Carbon Isotopes/analysis , Deuterium Exchange Measurement , Models, Molecular , Nitrogen Isotopes/analysis , Proteins/chemistry
13.
Proc Natl Acad Sci U S A ; 108(41): 16974-9, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-21969532

ABSTRACT

NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for (13)Cα and (15)N (peptide backbone) groups in a protein, the ß1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific (13)Cα and (15)N CSTs were measured using synchronously evolved recoupling experiments in which (13)C and (15)N tensors were projected onto the (1)H-(13)C and (1)H-(15)N vectors, respectively, and onto the (15)N-(13)C vector in the case of (13)Cα. The orientations of the (13)Cα CSTs to the (1)H-(13)C and (13)C-(15)N vectors agreed well with the results of ab initio calculations, with an rmsd of approximately 8°. In addition, the measured (15)N tensors exhibited larger reduced anisotropies in α-helical versus ß-sheet regions, with very limited variation (18 ± 4°) in the orientation of the z-axis of the (15)N CST with respect to the (1)H-(15)N vector. Incorporation of the (13)Cα CST restraints into structure calculations, in combination with isotropic chemical shifts, transferred echo double resonance (13)C-(15)N distances and vector angle restraints, improved the backbone rmsd to 0.16 Å (PDB ID code 2LGI) and is consistent with existing X-ray structures (0.51 Å agreement with PDB ID code 2QMT). These results demonstrate that chemical shift tensors have considerable utility in protein structure refinement, with the best structures comparable to 1.0-Å crystal structures, based upon empirical metrics such as Ramachandran geometries and χ(1)/χ(2) distributions, providing solid-state NMR with a powerful tool for de novo structure determination.


Subject(s)
Bacterial Proteins/chemistry , Anisotropy , Carbon Isotopes/chemistry , Crystallography, X-Ray , Hydrogen/chemistry , Models, Molecular , Molecular Structure , Nitrogen Isotopes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary
14.
Res Social Adm Pharm ; 20(5): 498-505, 2024 05.
Article in English | MEDLINE | ID: mdl-38365521

ABSTRACT

BACKGROUND: Optimising the management of vancomycin by achieving target therapeutic concentrations early during therapy has been associated with reduced mortality and morbidity. Despite the availability of guidelines and training, the management of vancomycin remains suboptimal. OBJECTIVES: The primary outcome was the development of interventions and associated implementation strategies to optimise the management of vancomycin therapy. This paper describes how co-design process was used to build a theory informed intervention package, which was implemented across a wide range of in-patient hospital settings in Queensland, Australia. METHODS: This multiple methods study was conducted in four phases: 1) a baseline audit to identify the nature of the problem and associated determinants informed by stakeholder interviews 2) mapping these findings to the Theoretical Domains Framework (TDF) to identify behavioural correlates and modifiers 3) prioritising the behavioural modifiers and associated implementation strategies to inform a protype of the intervention in a series of co-design sessions and 4) implementing and evaluating the intervention package. The study was conducted across the four teaching hospitals in a large Queensland Hospital and Health Service across multiple healthcare disciplines namely nurses, doctors, and pharmacists. This intervention package was subsequently implemented across Queensland Health with the support of the local champions under the guidance of the steering group. RESULTS: Clinicians identified that a multifaceted intervention package and training which can be tailored to the health-care professional disciplines, would be best suited to shift clinician behaviour to align with guidelines. The findings from the co-design process aligned with theory-informed intervention package. Each of the intervention strategies varied in their frequency and popularity of use. CONCLUSIONS: The use of theory-informed and participatory approach assisted with the intervention development process and aligned the intervention content with the priorities of stakeholders. The TDF provided a structured process for developing intervention content which is both acceptable and useful to stakeholders and may improve the management of vancomycin.


Subject(s)
Health Personnel , Vancomycin , Humans , Vancomycin/therapeutic use , Health Personnel/education , Australia
15.
J Biomol NMR ; 56(4): 379-86, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23812971

ABSTRACT

We present here (1)H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields (1)H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100%-H(N) back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Protons , Viral Proteins/chemistry , Carbon Isotopes
16.
Top Curr Chem ; 338: 181-228, 2013.
Article in English | MEDLINE | ID: mdl-23832684

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein extracts. However, biological NMR spectroscopy is limited to concentrated samples, typically in the millimolar range, due to its intrinsic low sensitivity compared to other techniques such as fluorescence or electron paramagnetic resonance (EPR) spectroscopy.Dynamic nuclear polarization (DNP) is a method that increases the sensitivity of NMR by several orders of magnitude. It exploits a polarization transfer from unpaired electrons to neighboring nuclei which leads to an absolute increase of the signal-to-noise ratio (S/N). Consequently, biological samples with much lower concentrations can now be studied in hours or days compared to several weeks.This chapter will explain the different types of DNP enhanced NMR experiments, focusing primarily on solid-state magic angle spinning (MAS) DNP, its applications, and possible means of improvement.


Subject(s)
Magnetic Resonance Spectroscopy/methods
17.
Chemistry ; 19(37): 12234-8, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-23959767

ABSTRACT

Direct evidence of the conformation of a Pd-N heterocyclic carbene (NHC) moiety imbedded in a hybrid material and of the Pd-NHC bond were obtained by dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) at natural abundance in short experimental times (hours). Overall, this silica-based hybrid material containing well-defined Pd-NHC sites in a uniform environment displays high activity and selectivity in the semihydrogenation of alkynes into Z-alkenes (see figure).


Subject(s)
Alkenes/chemistry , Alkynes/chemistry , Methane/analogs & derivatives , Hydrogenation , Magnetic Resonance Spectroscopy , Methane/chemistry , Molecular Conformation , Palladium/chemistry , Silicon Dioxide/chemistry
18.
J Pharm Sci ; 112(7): 1915-1928, 2023 07.
Article in English | MEDLINE | ID: mdl-36868358

ABSTRACT

Lorlatinib is an active pharmaceutical ingredient (API) used in the treatment of lung cancer. Here, an NMR crystallography analysis is presented whereby the single-crystal X-ray diffraction structure (CSD: 2205098) determination is complemented by multinuclear (1H, 13C, 14/15N, 19F) magic-angle spinning (MAS) solid-state NMR and gauge-including projector augmented wave (GIPAW) calculation of NMR chemical shifts. Lorlatinib crystallises in the P21 space group, with two distinct molecules in the asymmetric unit cell, Z' = 2. Three of the four NH2 hydrogen atoms form intermolecular hydrogen bonds, N30-H…N15 between the two distinct molecules and N30-H…O2 between two equivalent molecules. This is reflected in one of the NH21H chemical shifts being significantly lower, 4.0 ppm compared to 7.0 ppm. Two-dimensional 1H-13C, 14N-1H and 1H (double-quantum, DQ)-1H (single-quantum, SQ) MAS NMR spectra are presented. The 1H resonances are assigned and specific HH proximities corresponding to the observed DQ peaks are identified. The resolution enhancement at a 1H Larmor frequency of 1 GHz as compared to 500 or 600 MHz is demonstrated.


Subject(s)
Pyrazoles , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods , Crystallography, X-Ray
19.
Angew Chem Int Ed Engl ; 51(2): 432-5, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22113890

ABSTRACT

Membrane proteins in their native cellular membranes are accessible by dynamic nuclear polarization magic angle spinning solid-state NMR spectroscopy without the need of purification and reconstitution (see picture). Dynamic nuclear polarization is essential to achieve the required gain in sensitivity to observe the membrane protein of interest.


Subject(s)
Escherichia coli Proteins/analysis , Escherichia coli/chemistry , Membrane Proteins/analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Cell Membrane/chemistry , Models, Molecular
20.
NPJ Biofilms Microbiomes ; 8(1): 9, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217675

ABSTRACT

Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Biofilms , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Intestines
SELECTION OF CITATIONS
SEARCH DETAIL