Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Plant Direct ; 7(12): e555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111714

ABSTRACT

Proximity labeling was recently developed to detect protein-protein interactions and members of subcellular multiprotein structures in living cells. Proximity labeling is conducted by fusing an engineered enzyme with catalytic activity, such as biotin ligase, to a protein of interest (bait protein) to biotinylate adjacent proteins. The biotinylated protein can be purified by streptavidin beads, and identified by mass spectrometry (MS). TurboID is an engineered biotin ligase with high catalytic efficiency, which is used for proximity labeling. Although TurboID-based proximity labeling technology has been successfully established in mammals, its application in plant systems is limited. Here, we report the usage of TurboID for proximity labeling of FIP37, a core member of m6A methyltransferase complex, to identify FIP37 interacting proteins in Arabidopsis thaliana. By analyzing the MS data, we found 214 proteins biotinylated by GFP-TurboID-FIP37 fusion, including five components of m6A methyltransferase complex that have been previously confirmed. Therefore, the identified proteins may include potential proteins directly involved in the m6A pathway or functionally related to m6A-coupled mRNA processing due to spatial proximity. Moreover, we demonstrated the feasibility of proximity labeling technology in plant epitranscriptomics study, thereby expanding the application of this technology to more subjects of plant research.

2.
PeerJ ; 11: e15316, 2023.
Article in English | MEDLINE | ID: mdl-37180579

ABSTRACT

The present study was performed to investigate the effects of dietary supplementation with herbal additives on meat quality, slaughter performance and the cecal microbial community in Hungarian white geese. A total of 60 newborn geese were assigned equally into the control group (CON) and the herbal complex supplemented group (HS). The dietary supplementations consisted of Compound Herbal Additive A (CHAA) including Pulsatilla, Gentian and Rhizoma coptidis, and Compound Herbal Additive B (CHAB) containing Codonopsis pilosula, Atractylodes, Poria cocos and Licorice. The geese in the HS group received a basal diet supplemented with 0.2% CHAA from day 0 to day 42 at the postnatal stage. Then from day 43 to day 70, the geese in HS group were provide a basal diet with 0.15% CHAB. The geese in the CON group were only provided with the basal diet. The results showed that the slaughter rate (SR), half chamber rates (HCR), eviscerated rate (ER) and breast muscle rate (BMR) in the HS group tended to increase slightly compared with the CON group (ns). In addition, the shear force, filtration rate and pH value of breast muscle and thigh muscle in the HS group were slightly enhanced compared to the CON group (ns). Significant increased levels in carbohydrate content, fat content and energy (P < 0.01) and significant decreased levels in cholesterol content (P < 0.01) were observed in the muscle of the HS group. The total amino acid (Glu, Lys, Thr and Asp) content in the muscle increased in HS group than in the CON group (P < 0.01). Dietary herb supplementations significantly increased the levels of IgG in serum (P < 0.05) on day 43 and higher levels of IgM, IgA and IgG (P < 0.01) were also observed in the HS group on day 70. Furthermore, 16S rRNA sequencing results indicated that herbal additives increased the growth of beneficial bacteria and inhibited the proliferation of harmful bacteria in the geese caecum. Altogether, these results offer crucial insights into the potential benefits of incorporating CHAA and CHAB into the diets of Hungarian white goose. The findings indicate that such supplementations could significantly improve meat quality, regulate the immune system and shape the intestinal microbiota composition.


Subject(s)
Gastrointestinal Microbiome , Geese , Animals , Humans , Infant, Newborn , Hungary , RNA, Ribosomal, 16S , Dietary Supplements/analysis , Muscle, Skeletal , Meat/analysis , Cecum , Immunoglobulin G/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL