Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Plant Dis ; 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39342963

ABSTRACT

Maize stalk rot is a soil-borne disease that poses a serious threat to maize production worldwide, with the most significant cause being fungal stalk rot. The development of a visual and rapid detection method for the maize stalk rot pathogen is significant for its prompt and accurate identification, enhancing agricultural production efficiency, and implementing timely preventive measures. These measures will help safeguard the maize yield and quality, ultimately reducing agricultural losses. In this study, we aimed to develop an efficient method to detect maize stalk rot pathogens. We focused on three pathogenic fungi commonly found in maize-producing regions worldwide: Fusarium verticillioides, Fusarium proliferatum, and Fusarium graminearum. Based on TEF-1α, we developed a rapid detection technique using RPA-CRISPR/Cas12a, combined with test strips to develop an on-site rapid visual detection test for these pathogens. The method showed detection sensitivity for F. verticillioides, F. proliferatum, and F. graminearum within 20 min at concentrations of 7.8 pg/µL, 0.11 ng/µL, and 0.13 ng/µL, respectively. The sensitivity increased with increasing reaction time. Testing of field disease samples indicated that the method is effective in detecting nucleic acids obtained through crude extraction methods. In conclusion, we developed a visually rapid detection technology that does not rely on complex instruments and equipment for the on-site early detection of F. verticillioides, F. proliferatum, and F. graminearum in the field to implement effective control measures, ensuring stable and high maize yields.

2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674140

ABSTRACT

During choriogenesis in insects, chorion (eggshell) is formed by surrounding follicular epithelial cells in ovarioles. However, the regulatory endocrine factor(s) activating choriogenesis and the effect of chemical components on eggshell deserve further exploration. In two representative coleopterans, a coccinellid Henosepilachna vigintioctopunctata and a chrysomelid Leptinotarsa decemlineata, genes encoding the 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and ultraspiracle (USP), and two chitin biosynthesis enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP) and chitin synthase (ChS1), were highly expressed in ovaries of the young females. RNA interference (RNAi)-aided knockdown of either HvEcR or Hvusp in H. vigintioctopunctata inhibited oviposition, suppressed the expression of HvChS1, and lessened the positive signal of Calcofluor staining on the chorions, which suggests the reduction of a chitin-like substance (CLS) deposited on eggshells. Similarly, RNAi of LdEcR or Ldusp in L. decemlineata constrained oviposition, decreased the expression of LdUAP1 and LdChS1, and reduced CLS contents in the resultant ovaries. Knockdown of LdUAP1 or LdChS1 caused similar defective phenotypes, i.e., reduced oviposition and CLS contents in the L. decemlineata ovaries. These results, for the first time, indicate that 20E signaling activates choriogenesis in two coleopteran species. Moreover, our findings suggest the deposition of a CLS on the chorions.


Subject(s)
Coleoptera , Ecdysone , RNA Interference , Receptors, Steroid , Signal Transduction , Animals , Coleoptera/metabolism , Coleoptera/genetics , Female , Ecdysone/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Oviposition/drug effects , Egg Shell/metabolism , Ovary/metabolism
3.
J Appl Microbiol ; 133(5): 2979-2992, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35943823

ABSTRACT

AIMS: This study aimed to isolate and identify entomopathogenic fungi (EPF) from fungus-infected Ostrinia furnacalis larvae, screen their bio-efficacy against O. furnacalis, and select the most suitable virulent native EPF for biocontrol agent development. METHODS AND RESULTS: The occurrence of EPF isolated from various maize production regions in Xinjiang was investigated. Of 13,864 O. furnacalis cadavers surveyed, 536 were selected, and of 136 fungal specimens collected, 14 species were identified. Four fungal isolates were highly pathogenic to O. furnacalis: Aspergillus sp., Lecanicillium attenuatum, Beauveria bassiana and Penicillium polonicum. The Aspergillus sp. was the most abundant (42.25% distribution frequency). Bioassay results revealed that it was as pathogenic as B. bassiana (positive control), with 96.58% lethality against O. furnacalis (LC50 : 1.40 × 104 conidia ml-1 , LT50 : 3.41 days). Through morphological examination and rDNA-benA and rDNA-CaM homogeneity analyses, the isolate was identified as Aspergillus nomius. CONCLUSIONS: Four EPF species were highly pathogenic, with A. nomius being the most prevalent in Xinjiang. A. nomius is a potential biocontrol agent. SIGNIFICANCE AND IMPACT OF STUDY: For sustainable prevention and control of O. furnacalis infestation, identifying biocontrol agents with high virulence against O. furnacalis is crucial. The findings of this study support the development of EPF-based biocontrol approaches.


Subject(s)
Beauveria , Moths , Animals , Zea mays/genetics , Larva/microbiology , Beauveria/genetics , DNA, Ribosomal
4.
PLoS Genet ; 15(1): e1007423, 2019 01.
Article in English | MEDLINE | ID: mdl-30615614

ABSTRACT

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.


Subject(s)
Insect Hormones/genetics , Juvenile Hormones/genetics , Metamorphosis, Biological/genetics , Phototaxis , Animals , Coleoptera/genetics , Coleoptera/growth & development , Ecdysterone/metabolism , Genetic Fitness/genetics , Insect Proteins/genetics , Larva/genetics , Larva/growth & development , Pupa/genetics , Pupa/growth & development , RNA Interference , Signal Transduction
5.
Pestic Biochem Physiol ; 184: 105121, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715059

ABSTRACT

Pesticide resistance in pests drives the development of RNA interference (RNAi)-based technology as a novel approach for pest control. To investigate the effects of the positional dependency of double-stranded RNAs (dsRNAs), we newly designed four different 200 bp dsRNAs targeting Colorado potato beetle (CPB) ß-Actin gene, termed as dsACT200-1 to dsACT200-4, to compare their insecticidal activity to CPB larvae together with our previously used 200 bp and 700 bp dsRNAs (dsACT200 and dsACT700), respectively (He et al., 2020a). Each of dsRNAs harbors different numbers of expected siRNAs predicted by sequence-based prediction platform, dsACT200 and dsACT200-2 have a relatively higher number of siRNA than other 200 bps dsRNAs. When CPB larvae were fed with in vitro synthesized dsRNA-painted potato leaves, all the tested dsRNAs showed significant effects to protect against CPB larvae. Combined with the survival rate of CPB larvae, ß-Actin gene expression level and the surviving CPB larvae weight, various positional dsRNAs from the same allele showed different plant protection activity against CPB larvae and partially correlated with the predicted siRNA numbers and distribution on the target sequence. This study suggests the specific allelic locus for rational dsRNA design triggering RNAi efficiency for target gene silencing is an essential factor in enhancing the insecticidal activity.


Subject(s)
Coleoptera , Insecticides , Solanum tuberosum , Actins/genetics , Actins/metabolism , Actins/pharmacology , Animals , Insecticides/pharmacology , RNA Interference , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism
6.
Molecules ; 27(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35164323

ABSTRACT

Ceramic membranes have the advantages of high mechanical strength and thermal stability and are promising candidates for membrane distillation. Ceramic membranes are generally designed to have a multilayer structure with different pore sizes to create a high liquid entry pressure and obtain a high permeability. However, these structural characteristics pose significant difficulties in predicting permeate flux in a ceramic membrane contactor for vacuum membrane distillation (VMD). Here, a modeling approach was developed to simulate the VMD process and verified by comparing the simulated results with the experimental data. Furthermore, correlations are proposed to simplify the calculations of permeate flux for VMD using asymmetric ceramic membranes by assuming those multilayers to be an effectively quasi-symmetric layer and by introducing a correction factor. The simulation results indicated that this simplified correlation was effective and enabled a quick estimation of the effect of membrane parameters on permeate flux.

7.
Arch Insect Biochem Physiol ; 107(1): e21782, 2021 May.
Article in English | MEDLINE | ID: mdl-33724519

ABSTRACT

In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.


Subject(s)
Coleoptera/microbiology , Microbiota , Pupa/microbiology , Animals , Bacteria/classification , Coleoptera/physiology , Ecosystem , Genes, Bacterial , Larva/microbiology , Larva/physiology , Metagenomics/methods , Metamorphosis, Biological , Microbiota/genetics , Pupa/physiology , RNA, Ribosomal, 16S/genetics
8.
Pestic Biochem Physiol ; 175: 104838, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33993963

ABSTRACT

Crustacean cardioactive peptide (CCAP), a highly conserved amidated neuropeptide, stimulates feeding in Drosophila melanogaster and Periplaneta americana, and regulates pupa-adult transition in Tribolium castaneum and Manduca sexta. In the present paper, we intended to address whether CCAP plays the dual roles in the Colorado potato beetle Leptinotarsa decemlineata. We found that the levels of Ldccap were high in the dissected samples of brain-corpora cardiaca-corpora allata complex and ventral nerve cord, midgut and hindgut in the final (fourth)-instar larvae. A pulse of 20-hydroxyecdysone triggered the expression of Ldccap in the central nervous system but decreased the transcription in the midgut. In contrast, juvenile hormone intensified the expression of Ldccap in the midgut. RNA interference (RNAi)-aided knockdown of Ldccap at the penultimate instar stage inhibited foliage consumption, reduced the contents of trehalose and chitin, and lowered the mRNA levels of two chitin biosynthesis genes (LdUAP1 and LdChSAb). Moreover, around 70% of the Ldccap RNAi larvae remained as prepupae, completely wrapped in the old larval exuviae, and finally died. The remaining RNAi beetles continually developed to severely-deformed adults: most having wrinkled and smaller elytra and hindwings, and shortened legs. Therefore, CCAP plays three distinct roles, stimulating feeding in foraging larval stage, regulating ecdysis, and facilitating wing expansion and appendage elongation in a coleopteran. In addition, Ldccap can be used as a potential target gene for developing novel management strategies against this coleopteran pest.


Subject(s)
Coleoptera , Neuropeptides , Animals , Coleoptera/genetics , Drosophila melanogaster , Insect Proteins/genetics , Larva , Molting , Neuropeptides/genetics
9.
J Insect Sci ; 21(2)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33844016

ABSTRACT

Bemisia tabaci (Gennadius) cryptic complex has invaded Xinjiang, China, since 1998. The distribution of Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1) B. tabaci substrains has been gradually identified due to the development of molecular technology. In this study, the distribution of MED and MEAM1 in Xinjiang was determined by cleaved amplified polymorphic sequence (CAPs). Results showed that MED dominated in northern Xinjiang (84%), whereas MEAM1 was dominant in southern Xinjiang (72%). Five pairs of simple sequence repeat (SSR) primers were used to analyze the genetic diversity of B. tabaci among 36 geographic populations. The genetic diversity of MED and MEAM1was low and varied little among populations in Xinjiang (0.09 ± 0.14 and 0.09 ± 0.13, respectively). Based on ∆K statistic, 13 populations of MEAM1 could be classified into two subgroups at K = 2, whereas the 23 populations of MED could be classified into four subgroups at K = 4. However, Mantel t-test demonstrated no correlation between geographical and genetic distances among B. tabaci complex (R = 0.42, P = 1.00). Neighbor-joining and principal coordinate analysis showed that geographical isolation and interspecific differences were the main causes of the genetic variation. Gene flow predicted that MEAM1 was most likely introduced from Urumqi to the southern Xinjiang. Meanwhile, a large proportion of MED in Kashi region came from Changji and Yining. To block ongoing dispersal, strict detection and flower quarantine regulations need to be enforced.


Subject(s)
Hemiptera/genetics , Introduced Species , Animal Distribution , Animals , China , Asia, Eastern , Gene Flow , Genes, Insect , Genetic Variation , Polymerase Chain Reaction/methods
10.
J Exp Bot ; 71(9): 2670-2677, 2020 05 09.
Article in English | MEDLINE | ID: mdl-31903493

ABSTRACT

Transplastomic potato plants expressing double-stranded RNA (dsRNA) targeted against essential genes of the Colorado potato beetle (CPB) can be lethal to larvae by triggering an RNA interference (RNAi) response. High accumulation levels of dsRNAs in plastids are crucial to confer an efficient RNAi response in the insects. However, whether length and sequence of the dsRNA determine the efficacy of RNAi and/or influence the level of dsRNA accumulation in plastids is not known. We compared the RNAi efficacy of different lengths of dsRNA targeted against the CPB ß-Actin gene (ACT) by feeding in vitro-synthesized dsRNAs to larvae. We showed that, while the 60 bp dsRNA induced only a relatively low RNAi response in CPB, dsRNAs of 200 bp and longer caused high mortality and similar larval growth retardation. When the dsRNAs were expressed from the plastid (chloroplast) genome of potato plants, we found that their accumulation were negatively correlated with length. The level of dsRNA accumulation was positively associated with the observed mortality, suppression of larval growth, and suppression of target gene expression. Importantly, transplastomic potato plants expressing the 200 bp dsRNA were better protected from CPB than plants expressing the 297 bp dsRNA, the best-performing line in our previous study. Our results suggest that the length of dsRNAs is an important factor that influences their accumulation in plastids and thus determines the strength of the insecticidal RNAi effect. Our findings will aid the design of optimized dsRNA expression constructs for plant protection by plastid-mediated RNAi.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Coleoptera/genetics , Plastids , RNA Interference , RNA, Double-Stranded/genetics , Solanum tuberosum/genetics
11.
Pestic Biochem Physiol ; 160: 30-39, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31519255

ABSTRACT

An exploration of novel control strategies for Leptinotarsa decemlineata is becoming more pressing given rapid evolution of insecticide resistance and rise of production loss of potato. Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) is a promising alternative for management. An important first step is to uncover possible RNA-interference (RNAi)-target genes effective against both young and old larvae. Taiman (Tai) is a basic-helix-loop-helix/Per-Arnt-Sim transcription factor that is involved in the mediation of both juvenile hormone (JH) and 20-hydroxyecdysone (20E) signaling. In the present paper, we found that continuous ingestion of dsTai for three days by third (penultimate)-instar larvae caused approximately 20% larval mortality and 80% pupation failure. The larval lethality resulted from failed cuticle and tracheae shedding, which subsequently reduced foliage consumption and nutrient absorption, and depleted lipid stores. In contrast, pupation failure derived from disturbed JH and 20E signals, and disordered nutrient homeostasis including, among others, inhibition of trehalose metabolism and reduction of chitin content. Knockdown of LdTai caused similar larval lethality and pupation impairment in second and fourth (final) larval instars. Therefore, LdTai is among the most attractive candidate genes for RNAi to control L. decemlineata larvae.


Subject(s)
Coleoptera/growth & development , Gene Silencing , Insect Proteins/genetics , Larva/growth & development , Animals , Ecdysterone/metabolism , Gene Knockdown Techniques , Juvenile Hormones/metabolism , RNA Interference
12.
Amino Acids ; 47(7): 1445-54, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25868655

ABSTRACT

Alanine aminotransferase (ALT) plays important physiological and biochemical roles in insect. In this study, a full-length Ldalt cDNA was cloned from Leptinotarsa decemlineata. It was ubiquitously expressed in the eggs, larvae, pupae and adults. In the adults, Ldalt mRNA was widely distributed in thorax muscles, fat body, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdalt1 and dsLdalt2) targeting Ldalt were constructed and bacterially expressed. After adults fed on dsLdalt1- and dsLdalt2-immersed foliage for 3 day, Ldalt mRNA abundance was significantly decreased by 79.5 and 71.1 %, and ALT activities were significantly reduced by 64.5 and 67.6 %, respectively. Moreover, silencing Ldalt affected free amino acid contents. Lysine was decreased by 100.0 and 100.0 %, and arginine was reduced by 87.5 and 89.4 %, respectively, in the hemolymph from dsLdalt1- and dsLdalt2-ingested beetles, compared with control ones. In contrast, proline was increased by 88.7 and 96.4 %. Furthermore, ingestion of dsLdalt1 and dsLdalt2 significantly decreased flight speed, shortened flight duration time and flight distance. In addition, knocking down Ldalt significantly increased adult mortality. These data imply that LdALT plays important roles in amino acid metabolism and in flight in L. decemlineata.


Subject(s)
Alanine Transaminase/genetics , Amino Acids/metabolism , Coleoptera/enzymology , Insect Proteins/genetics , Alanine Transaminase/metabolism , Amino Acid Sequence , Animals , Flight, Animal , Gene Knockdown Techniques , Insect Proteins/metabolism , Larva/enzymology , Molecular Sequence Data , Phylogeny , RNA Interference , RNA, Double-Stranded/genetics , Transcription, Genetic
13.
Arch Insect Biochem Physiol ; 90(3): 154-67, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26280246

ABSTRACT

Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation.


Subject(s)
Coleoptera/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Amino Acid Sequence , Animals , Coleoptera/growth & development , EF Hand Motifs , Juvenile Hormones/metabolism , Larva/enzymology , Larva/growth & development , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Messenger/metabolism
14.
Pestic Biochem Physiol ; 122: 86-95, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26071812

ABSTRACT

Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, ß- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes.


Subject(s)
Carboxylesterase/genetics , Coleoptera/drug effects , Coleoptera/genetics , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrethrins/pharmacology , Animals , Carboxylic Ester Hydrolases/genetics , Gene Expression Regulation, Enzymologic/drug effects , Inactivation, Metabolic/genetics , Insect Proteins/genetics , Insecticides/pharmacology , Molecular Sequence Data , Phylogeny
15.
Pestic Biochem Physiol ; 123: 64-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26267054

ABSTRACT

RNA interference (RNAi) is a promising approach to control Leptinotarsa decemlineata. In this study, RNAi efficiency by double-stranded RNA (dsRNA) targeting S-adenosyl-L-homocysteine hydrolase (LdSAHase) was compared among L. decemlineata first- to fourth-instar larvae. Ingesting dsLdSAHase successfully decreased the target gene expression, caused lethality, inhibited growth and impaired pupation in an instar- and concentration-dependent manner. To study the role of Dicer2 and Argonaute2 genes in RNAi efficiency, we identified LdDcr2a, LdDcr2b, LdAgo2a and LdAgo2b. Their expression levels were higher in young larvae than those in old ones. Exposure to dsegfp for 6 h significantly elevated LdDcr2a, LdDcr2b, LdAgo2a and LdAgo2b mRNA levels in the first-, second-, third- and fourth-instar larvae. When the exposure periods were extended, however, the expression levels were gradually reduced. Continuous exposure for 72 h significantly repressed the expression of LdAgo2a and LdAgo2b in the first, second and third larval instars, and the four genes in final instars. Moreover, we found that dsLdSAHase-caused LdSAHase suppressions and larval mortalities were influenced by previous dsegfp exposure: 12 h of previous exposure increased LdSAHase silencing and mortality of the final instar larvae, whereas 72 h of exposure reduced LdSAHase silencing and mortality. Thus, it seems the activities of core RNAi-machinery proteins affect RNAi efficiency in L. decemlineata.


Subject(s)
Coleoptera/metabolism , RNA Interference , Adenosylhomocysteinase/biosynthesis , Animals , Argonaute Proteins/biosynthesis , Coleoptera/genetics , Insect Proteins/biosynthesis , Larva , Ribonuclease III/biosynthesis
16.
Pestic Biochem Physiol ; 114: 16-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25175645

ABSTRACT

Vacuolar-type H(+)-ATPases (vATPases) are localized in the apical membranes of nearly all epithelial tissues of insects, energize the membranes to absorb and/or secrete ions and fluids, and play essential roles in many physiological functions. Here we cloned and characterized a 1041-bp full-length vATPase subunit E cDNA (named as LdATPaseE) that encoded a 226-amino acid protein in Leptinotarsa decemlineata. LdATPaseE mRNA levels were constantly increased from egg to the third- and fourth-instar stages, dropped in wandering and pupal stages and were elevated again in the adult stage. It was highly expressed in ileum and rectum, moderately expressed in Malpighian tubules, midgut and foregut, and lowly expressed in fat body, ventral ganglion, epidermis and haemocytes in the fourth instars. After continuously ingested double-stranded RNAs originated from two LdATPaseE fragments LdATPaseE1 and LdATPaseE2, the target mRNA levels in the larvae were reduced by 85% and 55%, the larval growth and survival were significantly affected. Furthermore, topical application of fipronil, butane-fipronil, endosulfan and cypermethrin significantly upregulated LdATPaseE expression up to 8.3, 4.2, 2.8 and 6.2-fold 1 day after experiment, and up to 15.8, 3.4, 3.6 and 4.5-fold 2 days after treatment. It seems that depletion of vATPase subunit E is lethal, indicating that targeting vATPases by dsRNA appears a promising means of combating L. decemlineata. Moreover, vATPase subunit E is a pesticide inducible gene and may play a role in pesticide toxicity.


Subject(s)
Coleoptera/enzymology , Coleoptera/genetics , Insect Proteins/genetics , Insecticides/toxicity , RNA Interference , Vacuolar Proton-Translocating ATPases/genetics , Amino Acid Sequence , Animals , DNA, Complementary/genetics , Endosulfan/toxicity , Hydrocarbons, Halogenated/toxicity , Larva/enzymology , Larva/genetics , Molecular Sequence Data , Protein Subunits/genetics , Pyrazoles/toxicity , Pyrethrins/toxicity , RNA, Messenger/metabolism
17.
Heliyon ; 10(8): e29233, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681631

ABSTRACT

Carpomya pardalina is known for its potential invasiveness, which poses a significant and alarming threat to Cucurbitaceae crops. It is considered a highly perilous pest species that requires immediate attention for quarantine and prevention. Due to the challenges in distinguishing pests of the Tephritidae family based on morphological characteristics, it is imperative to elucidate the mitochondrial genomic information of C. pardalina. In this study, the mitochondrial genome sequence of C. pardalina was determined and analyzed using next-generation sequencing. The results revealed that the mitogenome sequence had a total length of 16,257 bp, representing a typical circular molecule. It consisted of 13 PCGs, two rRNA genes, 22 tRNA genes and a non-coding region. The structure and organization of the mitochondrial genome of C. pardalina were found to be typical and similar to the published homologous sequences of other fruit flies in the Tephritidae family. Phylogenetic analysis confirmed that C. pardalina belongs to the Carpomya genus, which is consistent with traditional morphological taxonomy. Additionally, Carpomya and Rhagoletis were identified as sister groups. This study presents the first report of the complete mitochondrial genome of C. pardalina, which can serve as a valuable resource for future investigations in species diagnosis, evolutionary biology, prevention and control measures.

18.
Pest Manag Sci ; 80(2): 282-295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37671631

ABSTRACT

BACKGROUND: Insect chitinases play crucial roles in degrading chitin in the extracellular matrix, affecting insect development and molting. However, our understanding of the specific functions of various chitinases in Leptinotarsa decemlineata is limited, hindering the deployment of novel gene-targeting technologies as pest management strategies. RESULTS: We identified and characterized 19 full-length complementary DNA (cDNA) sequences of chitinase genes (LdChts) in Leptinotarsa decemlineata. Despite having varying domain architectures, all these chitinases contained at least one chitinase catalytic domain. Phylogenetic analysis classified the chitinase proteins into ten distinct clusters (groups I-X). Expression profiles showed the highest expression in chitin-rich tissues or during specific developmental stages from the larva-to-pupa transition. Gene-specific RNA interference (RNAi) experiments provided valuable insight into chitinase gene function. Silencing of group II LdCht10 prevented larval-larval molting, larval-prepupal, and prepupal-pupal processes. Moreover, our study revealed that LdCht5, LdCht2, LdCht11, LdCht1, and LdCht3 from groups I and VII-X were specifically essential for the transition from prepupal to pupal stage, whereas LdIDGF2 from group V was necessary for the larval-prepupal metamorphic process. The chitinase gene LdCht7 from group III and LdIDGF4 from group V were involved in both the larva-to-prepupa and the prepupa-to-pupa shift. Additionally, our findings also shed light on the exclusive expression of nine chitinase genes within group IV in the digestive system, suggesting their potential role in regulating larval body weight and larva-to-pupa transition. CONCLUSION: Our results provide a comprehensive understanding of the functional specialization of chitinase genes during the molting process of various stages and identify potential targets for RNAi-based management of Leptinotarsa decemlineata. © 2023 Society of Chemical Industry.


Subject(s)
Chitinases , Coleoptera , Animals , Larva , Pupa , Chitinases/genetics , Phylogeny , Chitin/metabolism , Insect Proteins/metabolism , RNA Interference
19.
Insects ; 15(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39194764

ABSTRACT

Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are involved in the evolution of insecticide resistance. Leptinotarsa decemlineata (Say), the Colorado potato beetle (CPB), is a notorious insect that has developed resistance to various insecticides including neonicotinoids. This study investigated whether the differentially expressed P450 genes CYP9Z140 and CYP9AY1 and UGT gene UGT321AP1, found in our transcriptome results, conferred resistance to thiamethoxam in L. decemlineata. Resistance monitoring showed that the sampled field populations of L. decemlineata adults collected from Urumqi City and Qapqal, Jimsar, and Mulei Counties of Xinjiang in 2021-2023 developed low levels of resistance to thiamethoxam with resistance ratios ranging from 6.66- to 9.52-fold. Expression analyses indicated that CYP9Z140, CYP9AY1, and UGT321AP1 were significantly upregulated in thiamethoxam-resistant populations compared with susceptible populations. The expression of all three genes also increased significantly after thiamethoxam treatment compared with the control. Spatiotemporal expression patterns showed that the highest expression of CYP9Z140 and CYP9AY1 occurred in pupae and the midgut, whereas UGT321AP1 was highly expressed in adults and Malpighian tubules. Knocking down all three genes individually or simultaneously using RNA interference increased the sensitivity of adult L. decemlineata to thiamethoxam. These results suggest that overexpression of CYP9Z140, CYP9AY1, and UGT321AP1 contributes to the development of thiamethoxam resistance in L. decemlineata and provides a scientific basis for improving new resistance management of CPB.

20.
Insects ; 15(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39194827

ABSTRACT

The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest of potato crops. While Knickkopf (Knk) genes are essential for insect cuticle formation, their roles in pests like L. decemlineata remain unclear. This study aims to identify and characterize Knk genes in L. decemlineata and explore their functions in larval development and cuticle integrity. We used genomic and transcriptomic databases to identify LdKnk-family genes, validated through RT-PCR and RACE. Gene expression was analyzed at various developmental stages and tissues using qRT-PCR. RNA interference (RNAi) and Transmission electron microscopy (TEM) were applied to determine the functional roles of these genes. Four LdKnk-family genes were identified. Spatio-temporal expression analysis indicated significant gene expression during larval molting and pupal stages, especially in the epidermis. RNAi experiments showed that silencing LdKnk and LdKnk3-5' led to reduced larval weight, cuticle thinning, and increased mortality, while LdKnk3-FL knockdown caused abnormal cuticle thickening and molting disruptions. LdKnk2 knockdown increased epicuticle and endocuticle thickness without visible phenotypic changes. The study highlights the essential roles of LdKnk-family genes in maintaining cuticle structure and integrity, suggesting their potential as targets for RNAi-based pest control.

SELECTION OF CITATIONS
SEARCH DETAIL