Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Toxicol Appl Pharmacol ; 329: 158-164, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28595985

ABSTRACT

Phthalates are a group of endocrine disrupting chemicals and may have contributed to the recent global obesity health crisis. Increased adipogenesis via the peroxisome proliferator-activated receptor γ (PPARγ)-CCAAT-enhancer binding protein α (C/EBPα) pathway could be one critical mechanism responsible for phthalate-induced weight gain. On the other hand, curcumin has been shown to inhibit adipogenesis in cells and animal models. The present study was undertaken to evaluate, for the first time, whether curcumin could reduce adipogenesis induced by benzyl butyl phthalate (BBP) via downregulation of the PPARγ-C/EBPα pathway. 3T3-L1 preadipocytes were differentiated by treating them with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine in the presence of BBP, with or without curcumin. Cells that were grown in the presence of BBP alone showed a significant increase in triacylglycerol (TG) levels. In addition, the number of Oil Red O-stained cells and the mRNA expression levels of PPARγ, C/EBPα, adiponectin, and tumor necrosis factor-α (TNFα) were significantly increased. However, treatment with BBP in combination with curcumin resulted in major reductions in TG levels, the numbers of Oil Red O-stained cells, and the mRNA expression levels of the four proteins. These results suggest that curcumin might be an inhibitor of BBP-induced weight gain and inflammation via stimulation of adipocyte differentiation and TNFα generation. Curcumin may, therefore, be a potential medication for preventing the harmful effects of phthalates.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/pharmacology , Curcumin/pharmacology , Endocrine Disruptors/toxicity , Phthalic Acids/toxicity , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/pathology , Adiponectin/genetics , Adiponectin/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cytoprotection , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Mice , PPAR gamma/drug effects , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
J Clin Biochem Nutr ; 56(1): 15-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25678748

ABSTRACT

The twin character of reactive oxygen species is substantiated by a growing body of evidence that reactive oxygen species within cells act as inducers and accelerators of the oncogenic phenotype of cancer cells, while reactive oxygen species can also induce cancer cell death and can therefore function as anti-tumorigenic species. The aim of this study was to assess a possible influence of xanthine/xanthine oxidase on the proliferation of colorectal cancer cell line Caco-2. xanthine/xanthine oxidase (2.5 µM/0.25 mU/ml-25 µM/2.5 mU/ml) dose-dependently inhibited the proliferation of Caco-2 cells. Experiments utilizing reactive oxygen species scavengers (superoxide dismutase, catalase and mannitol) and exogenous hydrogen peroxide revealed a major role of hydrogen peroxide in the xanthine/xanthine oxidase effect. Investigations utilizing annexin V-fluorescein/PI assay using flow cytometry, and the lactate dehydrogenase extracellular release assay indicated that hydrogen peroxide induced necrosis, but not apoptosis, in Caco-2 cells. These results suggest that hydrogen peroxide generated by xanthine/xanthine oxidase has the potential to suppress colorectal cancer cell proliferation.

3.
Cell Biochem Funct ; 32(2): 188-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23945995

ABSTRACT

The aim of this study was to assess a possible role of monochloramine (NH2 Cl), one of the reactive chlorine species, which induce oxidative stress, on the proliferation of colorectal cancer cell line Caco-2. At concentrations ranging from 10 to 200 µM, NH2 Cl (14-61% inhibition), but not hypochlorous acid, dose-dependently inhibited the cell viability of Caco-2 cells. Experiments utilizing methionine (a scavenger of NH2 Cl), taurine-chloramine and glutamine-chloramine revealed that only NH2 Cl affects the cancer cell proliferation among reactive chlorine species, with a relative specificity. Furthermore, flow-cytometry experiments showed that the anti-proliferative effect of NH2 Cl is partially attributable to both apoptosis and G2/M cell cycle arrest. These results suggest that NH2 Cl has the potential to suppress colorectal cancer cell proliferation.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Chloramines/pharmacology , Colorectal Neoplasms/pathology , G2 Phase Cell Cycle Checkpoints/drug effects , Caco-2 Cells , Chloramines/metabolism , Humans
4.
J Nutr Metab ; 2022: 8705163, 2022.
Article in English | MEDLINE | ID: mdl-35096424

ABSTRACT

Sulforaphane and allyl isothiocyanate, naturally occurring isothiocyanates, have been reported to inhibit adipocyte differentiation, but little is known about how they compare in terms of their potency and mechanism of action. In the present study, we compared the effects of sulforaphane and allyl isothiocyanate on the differentiation of 3T3-L1 preadipocytes. A mixture of insulin, dexamethasone, and 3-isobutyl-1-methylxanthine was used to establish a differentiation medium. We found that, at a concentration as low as one-tenth that of allyl isothiocyanate, sulforaphane reduced triacylglycerol levels, lipid-filled adipocyte quantity, and mRNA and protein levels of CCAAT-enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). These results suggested that sulforaphane may be a more potent adipocyte differentiation inhibitor than allyl isothiocyanate. Our results may provide insight into possible strategies for the prevention of obesity and related conditions.

5.
Toxicol Appl Pharmacol ; 249(2): 127-31, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20816884

ABSTRACT

Among the aldehydes derived from lipid peroxidation, there have been several reports concerning the toxicity of 4-hydroxy-2-nonenal (4-HNE), whereas little information is available about 4-oxo-2-nonenal (4-ONE). In the present study, we examined the effects of 4-HNE and 4-ONE on the cell viability of primary rat hepatocyte cultures. At concentrations of 5, 10, and 20 µM, 4-HNE had no significant effect on the cell viability of primary rat hepatocytes cultures, whereas 4-ONE potently decreased the cell viability in a dose-dependent manner (5-20 µM, 23-69% inhibition). The TUNEL assay showed that 4-ONE causes apoptosis in the cells. 4-ONE also increased 2',7'-dichlorofluorescein-fluorescence intensity from 2',7'-dichlorodihydrofluorescein, an indicator of reactive oxygen species (ROS) generation. Allopurinol, a xanthine oxidase (XO) inhibitor, diminished the 4-ONE-induced increase in the 2',7'-dichlorofluorescein-fluorescence intensity and the decrease in viability, indicating the role of XO in mediating 4-ONE-induced cell death. These observations suggest that 4-ONE has the potential to induce liver cell death via XO-derived ROS generation.


Subject(s)
Aldehydes/toxicity , Hepatocytes/drug effects , Reactive Oxygen Species/metabolism , Xanthine Oxidase/metabolism , Animals , Apoptosis/drug effects , Dose-Response Relationship, Drug , Hepatocytes/cytology , Hepatocytes/metabolism , In Vitro Techniques , Rats
6.
Toxicol Appl Pharmacol ; 239(3): 268-72, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19527742

ABSTRACT

In the present study, we assessed the influence of monochloramine (NH(2)Cl) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in rat liver in vitro. When incubated with the partially purified cytosolic fraction from rat liver, NH(2)Cl (2.5-20 microM) dose-dependently enhanced XO activity concomitant with a decrease in XD activity, implying that NH(2)Cl can convert XD into the reactive oxygen species (ROS) producing form XO. The NH(2)Cl (5 microM)-induced XD/XO interconversion in the rat liver cytosol was completely inhibited when added in combination with an inhibitor of NH(2)Cl methionine (25 microM). A sulfhydryl reducing agent, dithiothreitol at concentrations of 0.1, 1 and 5 mM also dose-dependently reversed the NH(2)Cl (5 microM)-induced XD/XO interconversion. These imply that NH(2)Cl itself acts on the XD/XO interconversion, and that this conversion occurs at the cysteine residues in XD. Furthermore, using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate, it was found that NH(2)Cl could increase ROS generation in the cytoplasm of rat primary hepatocyte cultures, and that this increase might be reversed by an XO inhibitor, allopurinol. These results suggest that NH(2)Cl has the potential to convert XD into XO in the liver, which in turn may induce the ROS generation in this region.


Subject(s)
Chloramines/toxicity , Cytosol/drug effects , Liver/drug effects , Reactive Oxygen Species/metabolism , Xanthine Dehydrogenase/metabolism , Xanthine Oxidase/metabolism , Animals , Cells, Cultured , Cytosol/enzymology , Cytosol/metabolism , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , In Vitro Techniques , Liver/enzymology , Liver/metabolism , Male , Rats
7.
J Clin Biochem Nutr ; 45(2): 171-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19794925

ABSTRACT

Epidemiologic investigations indicate a close relationship between colorectal cancer and fat intake. However, to date the effects of lipid peroxidation-derived products that are formed from fat (especially free or esterified unsaturated fatty acids) on the initiation or progression of colorectal cancer have not been investigated extensively. Therefore, in the present study, we examined the effects of fatty acids, fatty acid hydroperoxides and aldehydes on the growth of human colorectal cancer cell line HT-29. At concentrations of 1 and 10 microM, linoleic, arachidonic and eicosapentaenoic acids, and 13-hydroperoxyoctadecadienoic and 15-hydroperoxyeicosapentaenoic acids had no significant effects on the growth of HT-29 cells. 4-Hydroxynonenal and 4-hydroxyhexenal had no significant effects on the growth of HT-29 cells up to 10 microM, whereas 4-oxononenal potently inhibited HT-29 cell growth (1-10 microM, 16-85% inhibition). Further experiments concerning DNA fragmentation, expression levels of Bax and Bcl-2 mRNA, expression levels of pro-caspase-3 and caspase-3 proteins, and activity of caspase-3 suggested that 4-oxononenal may increase the sensitivity of HT-29 cells to apoptosis through a decreased expression level of Bcl-2 and then increased formation of caspase-3 from pro-caspase-3.

8.
Article in English | MEDLINE | ID: mdl-31777644

ABSTRACT

There is conflicting data regarding the ability of nitric oxide (NO) to promote or inhibit colorectal cancer cell proliferation. Furthermore, NO reacts rapidly with endogenous superoxide at a diffusion-controlled rate to give peroxynitrite (ONOO-), a strong oxidant and nitrating agent. The aim of this study was to assess the effects of exogenous NO and ONOO- on the proliferation of the colorectal cancer cell line Caco-2. NOR5 and SIN-1 were used as NO and ONOO- donors, respectively. Both NOR5 and SIN-1 inhibited the proliferation of the Caco-2 cells; however, the effect of NOR5 was slightly stronger than that of SIN-1. The results also indicated that NO plays a major role in the inhibition of SIN-1-induced proliferation of Caco-2 cells. The results of a terminal deoxynucleotidyl transferase dUTP nick end labeling assay, cell cycle analysis, and p21 protein expression measurement further indicated that NO induced S-G2/M phase arrest, but not apoptosis, in the Caco-2 cells. The results suggest that NO, rather than ONOO-, has the potential to repress the proliferation of Caco-2 cells by inducing S-G2/M cell cycle arrest.

9.
Heliyon ; 5(8): e02244, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31440595

ABSTRACT

Conflicting data regarding the ability of hydrogen sulfide (H2S), which reaches high levels in the large intestine owing to biosynthesis in the intestinal cells and intestinal bacteria, to promote or inhibit colorectal cancer cell proliferation have been reported recently. In the present study, the effect of H2S on the proliferation of the human colorectal cancer cell line Caco-2 was examined by using the H2S donor GYY4137. At concentrations of 0.5 mM and 1.0 mM, GYY4137 significantly inhibited Caco-2 cell viability. Cell cycle analysis, and apoptosis and necrosis detection revealed that the anti-proliferative effect of GYY4137 was partially attributable to the induction of S-G2/M cell cycle arrest, apoptosis and necrosis. These results suggest that H2S has the potential to suppress human colorectal cancer cell proliferation by influencing both cell cycle and cell death.

10.
Article in English | MEDLINE | ID: mdl-18083017

ABSTRACT

The effects of palmitic acid (PA), stearic acid (SA) and oleic acid (OA), and their respective CoA esters, PA-CoA, SA-CoA and OA-CoA, on the activities of cyclooxygenase (COX)-1 and -2 were examined. Ten units of purified COX-1 or -2 were preincubated with drugs in the presence of hematin (0.1 microM) and phenol (2 mM) as cofactors for 10 min at 37 degrees C, and then incubated with 100 microM arachidonic acid for 2 min at 37 degrees C. The amounts of prostaglandins formed were measured by HPLC. PA, SA and OA had no effect on the COX-1 and -2 activities, but their respective CoA esters, PA-CoA, SA-CoA and OA-CoA, suppressed COX-1 activity with no significant effect on COX-2 activity. The inhibitory effect of SA-CoA was much stronger than that of PA-CoA and OA-CoA. These results suggest that SA has the potential to inhibit COX-1 activity, but not COX-2 activity, in the form of their CoA ester.


Subject(s)
Acyl Coenzyme A/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Stearic Acids/pharmacology , Animals , Arachidonic Acid/metabolism , Cattle , Oleic Acid/pharmacology , Palmitic Acid/pharmacology , Prostaglandins/metabolism
11.
J Clin Biochem Nutr ; 43(2): 65-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18818754

ABSTRACT

Linoleic acid (LA) preincubated with cyclooxygenase (COX)-1 or -2 inhibited prostaglandin (PG) formation from arachidonic acid (AA) catalyzed by the respective enzyme, but LA without the preincubation did not. 13S-Hydroperoxy-9Z,11E-octadecadienoic acid (13-HPODE) a hydroperoxy adduct of LA inhibited PG formation catalyzed by COX-1 or -2. 13S-Hydroxy-9Z,11E-octadecadienoic acid had no effect on both COX-1 and -2 activities. These results suggest that 13-HPODE which is preformed from LA by COX reaction under normal physiological conditions can be a basal suppressor of PG formation from AA.

12.
Article in English | MEDLINE | ID: mdl-30042814

ABSTRACT

Despite evidence that tripeptide glycyl-ʟ-histidyl-ʟ-lysine (GHK) is an endogenous antioxidant, its mechanism and importance are not fully understood. In the present study, the ability of GHK to reduce levels of reactive oxygen species (ROS) in Caco-2 cells was evaluated by flow cytometry with the oxidation-sensitive fluorescent dye 2',7'-dichlorodihydrofluorescein diacetate. Further, types of ROS diminished by GHK were assessed by utilizing an electron spin resonance (ESR) spin-trapping technique. GHK reduced the tert-butyl hydroperoxide-induced increase in ROS levels in Caco-2 cells at concentrations of 10 µM or less. Experiments utilizing an ESR spin-trapping technique revealed that, among hydroxyl (·OH), superoxide (O2-·), and peroxyl (ROO·) radicals generated by respective chemical reaction systems, GHK diminished signals of both ·OH and ROO·, but not O2-·. Additionally, the GHK effect on the signal of ·OH was much stronger than those of other well-known antioxidative, endogenous peptides, carnosine and reduced glutathione. These results suggest that GHK can function as an endogenous antioxidant in living organisms, possibly by diminishing ·OH and ROO·.

13.
Article in English | MEDLINE | ID: mdl-16889947

ABSTRACT

Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of eicosapentaenoic acid (EPA) and 15-hydroperoxyeicosapentaenoic acid (15-HPEPE) on the PG and AA-CoA formations from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [(14)C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. EPA reduced the PG and AA-CoA formations from both 60 and 5 microM AA. In contrast, 15-HPEPE decreased the PG formation without affecting the AA-CoA formation from 60 microM AA, and increased the AA-CoA formation at the expense of PG formation when 5 microM AA was used as substrate concentration. The experiments utilizing Fe(2+) and an electron spin resonance (ESR) revealed that 15-HPEPE elicits these effects in the form of hydroperoxy adduct. These results suggest that 15-HPEPE, but not EPA, has the potential to shift AA away from COX pathway into ACS pathway at low substrate concentration (close to the physiological concentration of AA).


Subject(s)
Arachidonic Acid/metabolism , Coenzyme A Ligases/metabolism , Eicosapentaenoic Acid/pharmacology , Kidney Medulla/drug effects , Kidney Medulla/metabolism , Microsomes/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Animals , Eicosapentaenoic Acid/analogs & derivatives , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Male , Microsomes/drug effects , Rabbits , Signal Transduction/drug effects , tert-Butylhydroperoxide/pharmacology
14.
Prostaglandins Other Lipid Mediat ; 79(3-4): 271-7, 2006 May.
Article in English | MEDLINE | ID: mdl-16647640

ABSTRACT

Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of linoleic acid (LA) and 13-hydroperoxyoctadecadienoic acid (13-HPODE) on the PG and AA-CoA formation from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [(14)C]-AA in 0.1M Tris-HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. LA (10-50 microM) reduced only PG formation from both 60 and 5 microM AA. 13-HPODE (10-50 microM) also reduced PG formation from 60 and 5 microM AA, but the inhibitory potency was much stronger than that by LA. Furthermore, 13-HPODE had the potential to increase the AA-CoA formation with a decrease in the PG formation from 5 microM AA. These results suggest that 13-HPODE, but not LA, may shift AA away from COX pathway into ACS pathway under low substrate concentration (near physiological concentration of AA).


Subject(s)
Acyl Coenzyme A/biosynthesis , Arachidonic Acid/metabolism , Kidney Medulla/metabolism , Linoleic Acids/pharmacology , Lipid Peroxides/pharmacology , Prostaglandins/biosynthesis , Animals , Dose-Response Relationship, Drug , Kidney Medulla/cytology , Kidney Medulla/drug effects , Linoleic Acids/metabolism , Lipid Peroxides/metabolism , Male , Microsomes/metabolism , Rabbits
15.
Article in English | MEDLINE | ID: mdl-16181777

ABSTRACT

Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To explore the possible actions of endocrine disruptors on the metabolic fate of free AA into these two pathways, we investigated the effects of nonylphenol (NP), bisphenol A (BPA), di-n-butyl phthalate (DBP), benzyl-n-butyl phthalate (BBP) and di-2-ethylhexyl phthalate (DEHP) on the formation of PG and AA-CoA from 5 microM AA (close to the physiological concentration of the substrate) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 5 microM [(14)C]-AA in 0.1 M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. NP (1-200 microM) strongly enhanced the AA-CoA formation with a coincident decrease in the PG formation. BPA, DBP, BBP and DEHP failed to show any effect on the PG and AA-CoA formation up to 200 microM. Experiments utilizing 60 microM AA as the substrate concentration indicated that, under a low concentration of AA, NP decreases PG formation by inhibiting the COX activity, and reduces the AA flow into the COX pathway through inhibition on the COX activity, increasing availability of the substrate for the ACS and leading to enhanced AA-CoA formation. These results firstly show that NP has the potential to disturb the balance of PG and AA-CoA formations under normal physiological conditions.


Subject(s)
Acyl Coenzyme A/biosynthesis , Arachidonic Acid/metabolism , Endocrine Disruptors/pharmacology , Kidney Medulla/metabolism , Prostaglandins/biosynthesis , Alkanes/pharmacology , Animals , Benzhydryl Compounds , Dibutyl Phthalate/pharmacology , Diethylhexyl Phthalate/pharmacology , Kidney Medulla/drug effects , Kidney Medulla/ultrastructure , Male , Microsomes/drug effects , Microsomes/metabolism , Phenol/pharmacology , Phenols/pharmacology , Phthalic Acids/pharmacology , Rabbits
16.
Article in English | MEDLINE | ID: mdl-15380821

ABSTRACT

The effects of reactive oxygen species (superoxide anion radical--O(2)*-, hydrogen peroxide--H(2)O(2) and hydroxyl radical--*OH; the reaction products of xanthine plus xanthine oxidase system) and reactive nitrogen species [nitric oxide--NO*; from 1-hydroxyl-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene--NOC7 and peroxynitrite--ONOO(-)] on the activities of purified cyclooxygenase (COX)-1 and -2 were studied. Xanthine plus xanthine oxidase suppressed the COX-1 and -2 activities in a xanthine oxidase concentration-dependent fashion. This effect was reversed by addition of catalase to the reactive oxygen species-generating system but not by superoxide dismutase or mannitol, indicating that H(2)O(2) is the responsible metabolite. NOC7 activated the COX-1 activity but inhibited the COX-2 activity at concentrations ranging from 1 to 50 microM. Experiments utilizing a NO* antidote, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide revealed that the observed effects of NOC7 are caused by NO*.ONOO(-), a product of NO* and O(2)*-, both activated and inhibited the COX-1 and -2 activities, depending on ONOO(-) concentration. At a low concentration of ONOO(-) (5 microM) there was enhancement of the COX-1 and -2 activities, but with higher concentrations there was suppression of these two enzyme activities (COX-1, at 200 microM; COX-2, >50 microM). These results suggest that H(2)O(2), NO* and ONOO(-) can have different modulatory effects on the COX-1 and -2 activities.


Subject(s)
Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Nitrogen Species/pharmacology , Reactive Oxygen Species/pharmacology , Animals , Catalase/pharmacology , Cyclooxygenase 1 , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/pharmacology , Female , Hydrogen Peroxide/pharmacology , Hydroxyl Radical/pharmacology , Male , Nitric Oxide/pharmacology , Peroxynitrous Acid/pharmacology , Placenta/enzymology , Pregnancy , Seminal Vesicles/enzymology , Sheep , Superoxides/pharmacology , Triazenes/pharmacology , Xanthine/metabolism , Xanthine Oxidase/metabolism
17.
Article in English | MEDLINE | ID: mdl-12711252

ABSTRACT

Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To clarify factors deciding the metabolic fate of free AA into these two pathways, we investigated the effects of a nitric oxide (NO) donor 1-hydroxyl-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7), and peroxynitrite (ONOO(-)) on the formation of PG and AA-CoA from high and low concentrations of AA (60 and 5 micro M) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 micro M [14C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced GSH and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. When 60 micro M AA was used as the substrate concentration, NOC7 stimulated the PG formation at 0.5 micro M, and inhibited it at 50 and 100 micro M, without affecting the AA-CoA formation. When 5 micro M AA was used as the substrate concentration, NOC7 showed no effect on the PG and AA-CoA formation up to 10 micro M or below, but enhanced the AA-CoA formation with a coincident decrease in the PG formation at 50 micro M or over. Experiments utilizing a NO antidote, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, revealed that the observed effects of NOC7 using 60 and 5 micro M AA are caused by NO. On the other hand, ONOO(-) stimulated the PG formation from 60 micro M AA, with no alteration in the AA-CoA formation at a concentration of 100 micro M, but when 5 micro M AA was used as the substrate concentration, it was without effect on the PG and AA-CoA formation. These findings indicate that actions of NO and ONOO(-) on the PG and AA-CoA formation by the kidney medulla microsomes may change depending on the substrate concentration. The effects of NO using 5 micro M AA were reversed by the addition of the superoxide generating system (xanthine-xanthine oxidase plus catalase), indicating that superoxide is a vital modulator of the action of NO. These results suggest that NO, but not ONOO(-), can be a regulator of the PG and AA-CoA formation at low substrate concentrations (close to the physiological concentration of AA), and that superoxide may play an important role in the action of NO.


Subject(s)
Acyl Coenzyme A/biosynthesis , Arachidonic Acids/metabolism , Microsomes/drug effects , Nitric Oxide Donors/pharmacology , Peroxynitrous Acid/pharmacology , Prostaglandins/biosynthesis , Animals , Dose-Response Relationship, Drug , Kidney Medulla/ultrastructure , Microsomes/metabolism , Nitric Oxide/metabolism , Nitric Oxide Donors/metabolism , Rabbits , Triazenes/pharmacology
18.
Life Sci ; 75(10): 1211-8, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15219809

ABSTRACT

Effects of auranofin (AUR), aurothioglucose (AuTG) and aurothiomalate (AuTM) on the conversion of xanthine dehydrogenase (XD) to oxidase (XO) in the cytosolic fraction from rabbit liver were examined. AUR had no effect on the conversion of XD to XO at concentrations up to 50 microM, whereas at concentrations ranging from 10 to 25 microM, AuTG and AuTM induced the conversion of XD to XO. The constituents of AuTG and AuTM, aurous ion (Au+), but not mercaptosuccinic acid and 1-thio-beta-D-glucose, converted XD to XO in a similar degree to AuTG and AuTM. This means that Au (I) moiety has an important role in the AuTG- and AuTM-induced conversion of XD to XO. Furthermore, N-acetyl-L-cysteine (NAC) and British anti-Lewisite (BAL) reconverted AuTG and AuTM-induced XO to XD, implying that clinical activity of NAC and BAL against toxic reactions of AuTG and AuTM is partially due to the XO reconversion. These results suggest that AuTG and AuTM have the potential to convert XD to its reactive oxygen species-generating form, XO, and that this effect may be correlated with cytotoxic actions of these drugs.


Subject(s)
Antirheumatic Agents/pharmacology , Cytosol/drug effects , Liver/drug effects , Xanthine Dehydrogenase/metabolism , Xanthine Oxidase/metabolism , Animals , Auranofin/pharmacology , Aurothioglucose/pharmacology , Cell Fractionation , Cytosol/enzymology , Dose-Response Relationship, Drug , Gold Sodium Thiomalate/pharmacology , Liver/enzymology , Male , Rabbits , Reactive Oxygen Species/metabolism
19.
Life Sci ; 70(19): 2209-14, 2002 Mar 29.
Article in English | MEDLINE | ID: mdl-12005180

ABSTRACT

The anthropogenic chemicals nonylphenol, bisphenol A, phthalic acid benzyl n-butyl ester, phthalic acid di-n-butyl ester and phthalic acid di(2-ethylhexyl) ester have been shown to possess sex hormone-like activity. To explore the possible actions of these chemicals on the autacoid synthesis in the body, we investigated the effects of nonylphenol, bisphenol A, phthalic acid benzyl n-butyl ester, phthalic acid di-n-butyl ester and phthalic acid di(2-ethylhexyl) ester on the activities of cyclooxygenase-1 and -2. Bisphenol A and all three phthalic acid derivatives had no significant effect on the cyclooxygenase-1 and -2 activities up to 100 microM. On the other hand, nonylphenol exhibited a marked inhibition on the cyclooxygenase-1 activity (10-100 microM nonylphenol, 7-95% inhibition), with no detectable change in the activity of cyclooxygenase-2. The inhibition patterns for the substrate, arachidonic acid, and a cofactor, phenol, were competitive and uncompetitive, respectively. These results suggest that nonylphenol can be a selective inhibitor of cyclooxygenase-1 activity.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Phenols/pharmacology , Animals , Cyclooxygenase 1 , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Female , Male , Prostaglandin-Endoperoxide Synthases , Sheep
20.
J Clin Biochem Nutr ; 51(1): 55-60, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22798714

ABSTRACT

We previously reported that the all-cis isomer of arachidonic acid, the most naturally occurring isoform of this fatty acid, reduced cuprous copper ion-induced conversion of xanthine dehydrogenase into its reactive oxygen species generating form, xanthine oxidase. In the present study, the effects of all-trans isomer of arachidonic acid, in comparison with cis isomer of arachidonic acid, on the xanthine dehydrogenase/xanthine oxidase interconversion were explored. cis isomer of arachidonic acid alone did not have any significant effect on the activities of xanthine dehydrogenase and xanthine oxidase, but it inhibited the cuprous copper ion-induced conversion of xanthine dehydrogenase to xanthine oxidase in rat liver cytosol in vitro. In contrast, trans isomer of arachidonic acid elicited an increase in xanthine oxidase activity concomitant with a decrease in xanthine dehydrogenase activity, and further potentiated the cuprous copper ion-induced xanthine dehydrogenase/xanthine oxidase interconversion. In primary rat hepatocyte cultures, trans isomer of arachidonic acid increased 2',7'-dichlorofluorescein-fluorescence intensity in the cytosolic fraction from 2',7'-dichlorodihydrofluorescein, an indicator of reactive oxygen species generation. The pretreatment of allopurinol, an xanthine oxidase inhibitor, diminished the trans isomer of arachidonic acid-induced increase in the 2',7'-dichlorofluorescein-fluorescence intensity, indicating the role of xanthine dehydrogenase/xanthine oxidase in mediating trans isomer of arachidonic acid-induced reactive oxygen species generation. These observations suggest that, in contrast to all-cis arachidonic acid, all-trans arachidonic acid has the potential to enhance reactive oxygen species generation via xanthine dehydrogenase/xanthine oxidase interconversion in the liver cytosol in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL