Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Micromachines (Basel) ; 11(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610671

ABSTRACT

We propose a thin, single-layered circular dichroic filter with Au nanospiral structures on a polydimethylsiloxane (PDMS) thin film that has strong circular dichroism at visible wavelengths. Au nanospiral structures with a diameter of 70 nm were fabricated by cryogenic glancing angle deposition on a substrate with a nanodot array template patterned with the block copolymer PS-PDMS. The Au nanospiral structures were transferred onto a transparent and flexible PDMS thin film to fabricate a thin, single-layered circular dichroic filter. The filter had a very large circular dichroism peak of -830 mdeg at 630 nm. The results show that the Au nanospiral structures transferred onto PDMS thin film exhibit large circular dichroism at visible wavelengths.

2.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629841

ABSTRACT

In this study, we propose a microelectromechanical system (MEMS) force sensor for microflow measurements. The sensor is equipped with a flow sensing piezoresistive cantilever and a dummy piezoresistive cantilever, which acts as a temperature reference. Since the dummy cantilever is also in the form of a thin cantilever, the temperature environment of the dummy sensor is almost identical to that of the sensing cantilever. The temperature compensation effect was measured, and the piezoresistive cantilever was combined with a gasket jig to enable the direct implementation of the piezoresistive cantilever in a flow tube. The sensor device stably measured flow rates from 20 µL/s to 400 µL/s in a silicon tube with a 2-mm inner diameter without being disturbed by temperature fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL