Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cell ; 81(4): 708-723.e5, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606974

ABSTRACT

The PI3K pathway regulates cell metabolism, proliferation, and migration, and its dysregulation is common in cancer. We now show that both physiologic and oncogenic activation of PI3K signaling increase the expression of its negative regulator PTEN. This limits the duration of the signal and output of the pathway. Physiologic and pharmacologic inhibition of the pathway reduces PTEN and contributes to the rebound in pathway activity in tumors treated with PI3K inhibitors and limits their efficacy. Regulation of PTEN is due to mTOR/4E-BP1-dependent control of its translation and is lost when 4E-BP1 is deleted. Translational regulation of PTEN is therefore a major homeostatic regulator of physiologic PI3K signaling and plays a role in reducing the pathway activation by oncogenic PIK3CA mutants and the antitumor activity of PI3K pathway inhibitors. However, pathway output is hyperactivated in tumor cells with coexistent PI3K mutation and loss of PTEN function.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , Homeostasis , Neoplasms/enzymology , PTEN Phosphohydrolase/biosynthesis , Protein Biosynthesis , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , CHO Cells , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Cricetulus , Humans , Mutation , Neoplasms/genetics , PTEN Phosphohydrolase/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659913

ABSTRACT

BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.

3.
bioRxiv ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38766126

ABSTRACT

The majority of human breast cancers are dependent on hormone-stimulated estrogen receptor alpha (ER) and are sensitive to its inhibition. Treatment resistance arises in most advanced cancers due to genetic alterations that promote ligand independent activation of ER itself or ER target genes. Whereas re-targeting of the ER ligand binding domain (LBD) with newer ER antagonists can work in some cases, these drugs are largely ineffective in many genetic backgrounds including ER fusions that lose the LBD or in cancers that hyperactivate ER targets. By identifying the mechanism of ER translation, we herein present an alternative strategy to target ER and difficult to treat ER variants. We find that ER translation is cap-independent and mTOR inhibitor insensitive, but dependent on 5' UTR elements and sensitive to pharmacologic inhibition of the translation initiation factor eIF4A, an mRNA helicase. EIF4A inhibition rapidly reduces expression of ER and short-lived targets of ER such as cyclin D1 and other components of the cyclin D-CDK complex in breast cancer cells. These effects translate into suppression of growth of a variety of ligand-independent breast cancer models including those driven by ER fusion proteins that lack the ligand binding site. The efficacy of eIF4A inhibition is enhanced when it is combined with fulvestrant-an ER degrader. Concomitant inhibition of ER synthesis and induction of its degradation causes synergistic and durable inhibition of ER expression and tumor growth. The clinical importance of these findings is confirmed by results of an early clinical trial (NCT04092673) of the selective eIF4A inhibitor zotatifin in patients with estrogen receptor positive metastatic breast cancer. Multiple clinical responses have been observed on combination therapy including durable regressions. These data suggest that eIF4A inhibition could be a useful new strategy for treating advanced ER+ breast cancer.

4.
Cancer Discov ; 14(9): 1599-1611, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38691346

ABSTRACT

RAF inhibitors have transformed treatment for patients with BRAFV600-mutant cancers, but clinical benefit is limited by adaptive induction of ERK signaling, genetic alterations that induce BRAFV600 dimerization, and poor brain penetration. Next-generation pan-RAF dimer inhibitors are limited by a narrow therapeutic index. PF-07799933 (ARRY-440) is a brain-penetrant, selective, pan-mutant BRAF inhibitor. PF-07799933 inhibited signaling in vitro, disrupted endogenous mutant-BRAF:wild-type-CRAF dimers, and spared wild-type ERK signaling. PF-07799933 ± binimetinib inhibited growth of mouse xenograft tumors driven by mutant BRAF that functions as dimers and by BRAFV600E with acquired resistance to current RAF inhibitors. We treated patients with treatment-refractory BRAF-mutant solid tumors in a first-in-human clinical trial (NCT05355701) that utilized a novel, flexible, pharmacokinetics-informed dose escalation design that allowed rapid achievement of PF-07799933 efficacious concentrations. PF-07799933 ± binimetinib was well-tolerated and resulted in multiple confirmed responses, systemically and in the brain, in patients with BRAF-mutant cancer who were refractory to approved RAF inhibitors. Significance: PF-07799933 treatment was associated with antitumor activity against BRAFV600- and non-V600-mutant cancers preclinically and in treatment-refractory patients, and PF-07799933 could be safely combined with a MEK inhibitor. The novel, rapid pharmacokinetics (PK)-informed dose escalation design provides a new paradigm for accelerating the testing of next-generation targeted therapies early in clinical development.


Subject(s)
Drug Resistance, Neoplasm , Mutation , Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Female , Neoplasms/drug therapy , Neoplasms/genetics , Xenograft Model Antitumor Assays , Male , Middle Aged , Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Aged , Adult , Cell Line, Tumor
5.
Cancer Res ; 80(7): 1428-1437, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32015092

ABSTRACT

Genomic rearrangements leading to the aberrant expression of ERG are the most common early events in prostate cancer and are significantly enriched for the concomitant loss of PTEN. Genetically engineered mouse models reveal that ERG overexpression alone is not sufficient to induce tumorigenesis, but combined loss of PTEN results in an aggressive invasive phenotype. Here, we show that oncogenic ERG repressed PI3K signaling through direct transcriptional suppression of IRS2, leading to reduced RTK levels and activity. In accordance with this finding, ERG-positive human prostate cancers had a repressed AKT gene signature and transcriptional downregulation of IRS2. Although overexpression of IRS2 activated PI3K signaling, promoting cell migration in a PI3K-dependent manner, this did not fully recapitulate the phenotype seen with loss of PTEN as PI3K signaling is not as robust as observed in the setting of loss of PTEN. Importantly, deletions of the PTEN locus, which promotes active PI3K signaling, were among the most significant copy-number alterations that co-occurred with ERG genomic rearrangements. This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote oncogenic signaling during tumor evolution. SIGNIFICANCE: This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote tumorigenesis.


Subject(s)
Insulin Receptor Substrate Proteins/genetics , Oncogene Proteins/metabolism , Prostatic Neoplasms/genetics , Transcriptional Regulator ERG/metabolism , Animals , Carcinogenesis/genetics , Cell Line, Tumor , DNA Copy Number Variations , Disease Models, Animal , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Knockout Techniques , Gene Rearrangement , Humans , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Oncogene Proteins/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Primary Cell Culture , Promoter Regions, Genetic/genetics , Prostate/pathology , Prostatic Neoplasms/pathology , RNA-Seq , Signal Transduction/genetics , Transcriptional Regulator ERG/genetics , Xenograft Model Antitumor Assays
6.
J Alzheimers Dis ; 15(3): 473-93, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18997301

ABSTRACT

Oxidative damage is strongly implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and stroke (brain ischemia/reperfusion injury). The availability of transgenic and toxin-inducible models of these conditions has facilitated the preclinical evaluation of putative antioxidant agents ranging from prototypic natural antioxidants such as vitamin E (alpha-tocopherol) to sophisticated synthetic free radical traps and catalytic oxidants. Literature review shows that antioxidant therapies have enjoyed general success in preclinical studies across disparate animal models, but little benefit in human intervention studies or clinical trials. Recent high-profile failures of vitamin E trials in Parkinson's disease, and nitrone therapies in stroke, have diminished enthusiasm to pursue antioxidant neuroprotectants in the clinic. The translational disappointment of antioxidants likely arises from a combination of factors including failure to understand the drug candidate's mechanism of action in relationship to human disease, and failure to conduct preclinical studies using concentration and time parameters relevant to the clinical setting. This review discusses the rationale for using antioxidants in the prophylaxis or mitigation of human neurodiseases, with a critical discussion regarding ways in which future preclinical studies may be adjusted to offer more predictive value in selecting agents for translation into human trials.


Subject(s)
Antioxidants/metabolism , Antioxidants/therapeutic use , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Huntington Disease/drug therapy , Huntington Disease/metabolism , Huntington Disease/pathology , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology
7.
Cancer Cell ; 25(5): 697-710, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24746704

ABSTRACT

MEK inhibitors are clinically active in BRAF(V600E) melanomas but only marginally so in KRAS mutant tumors. Here, we found that MEK inhibitors suppress ERK signaling more potently in BRAF(V600E), than in KRAS mutant tumors. To understand this, we performed an RNAi screen in a KRAS mutant model and found that CRAF knockdown enhanced MEK inhibition. MEK activated by CRAF was less susceptible to MEK inhibitors than when activated by BRAF(V600E). MEK inhibitors induced RAF-MEK complexes in KRAS mutant models, and disrupting such complexes enhanced inhibition of CRAF-dependent ERK signaling. Newer MEK inhibitors target MEK catalytic activity and also impair its reactivation by CRAF, either by disrupting RAF-MEK complexes or by interacting with Ser 222 to prevent MEK phosphorylation by RAF.


Subject(s)
Drug Resistance, Neoplasm/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , Melanoma/enzymology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , TNF Receptor-Associated Factor 3/genetics , ras Proteins/genetics , Animals , Benzamides/pharmacology , Cell Line , Coumarins/pharmacology , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Indoles/pharmacology , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/genetics , MAP Kinase Signaling System/drug effects , Melanoma/drug therapy , Melanoma/genetics , Mice , Mice, Nude , Phosphorylation/drug effects , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , Pyridones/pharmacology , Pyrimidinones/pharmacology , RNA Interference , RNA, Small Interfering , Sulfonamides/pharmacology , Surface Plasmon Resonance , TNF Receptor-Associated Factor 3/metabolism , Vemurafenib , raf Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL