Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Infect Dis ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083679

ABSTRACT

Malaria elimination relies on detection of Plasmodium falciparum Histidine-Rich Proteins 2/3 (HRP2/3) through rapid diagnostic tests (RDTs) and treatment with artemisinin-combination therapies (ACTs). Data from the Horn of Africa suggest increasing hrp2/3 gene deletions and ACT partial resistance kelch13 (k13) mutations. To assess this, 233 samples collected during a national survey from 7 regions of Ethiopia were studied for hrp2/3 deletions by droplet digital dPCR and k13 mutations by DNA sequencing. Approximately 22% of the study population harbored complete hrp2/3 deletions by ddPCR. Thirty-two of 42 of k13 SNPs identified were R622I associated with ACT partial resistance. Both hrp2/3 deletions and k13 mutations associated with ACT partial resistance appear to be co-occurring especially in Northwest Ethiopia. Ongoing national surveillance relying on accurate laboratory methods are required to fully elaborate the genetic diversity of P. falciparum to inform public health policy makers.

2.
Cell Chem Biol ; 29(3): 423-435.e10, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34715056

ABSTRACT

Efforts to target glucose metabolism in cancer have been limited by the poor potency and specificity of existing anti-glycolytic agents and a poor understanding of the glucose dependence of cancer subtypes in vivo. Here, we present an extensively characterized series of potent, orally bioavailable inhibitors of the class I glucose transporters (GLUTs). The representative compound KL-11743 specifically blocks glucose metabolism, triggering an acute collapse in NADH pools and a striking accumulation of aspartate, indicating a dramatic shift toward oxidative phosphorylation in the mitochondria. Disrupting mitochondrial metabolism via chemical inhibition of electron transport, deletion of the malate-aspartate shuttle component GOT1, or endogenous mutations in tricarboxylic acid cycle enzymes, causes synthetic lethality with KL-11743. Patient-derived xenograft models of succinate dehydrogenase A (SDHA)-deficient cancers are specifically sensitive to KL-11743, providing direct evidence that TCA cycle-mutant tumors are vulnerable to GLUT inhibitors in vivo.


Subject(s)
Citric Acid Cycle , Neoplasms , Aspartic Acid/metabolism , Glucose/metabolism , Humans , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
3.
J Med Chem ; 63(10): 5201-5211, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32282207

ABSTRACT

Aerobic glycolysis, originally identified by Warburg as a hallmark of cancer, has recently been implicated in immune cell activation and growth. Glucose, the starting material for glycolysis, is transported through the cellular membrane by a family of glucose transporters (GLUTs). Therefore, targeting glucose transporters to regulate aerobic glycolysis is an attractive approach to identify potential therapeutic agents for cancers and autoimmune diseases. Herein, we describe the discovery and optimization of a class of potent, orally bioavailable inhibitors of glucose transporters, targeting both GLUT1 and GLUT3.


Subject(s)
Drug Discovery/methods , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Caco-2 Cells , Dose-Response Relationship, Drug , Drug Discovery/trends , Glycolysis/drug effects , Glycolysis/physiology , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL