Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39028694

ABSTRACT

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Subject(s)
COVID-19 , Lung , Organoids , SARS-CoV-2 , Virus Internalization , Humans , SARS-CoV-2/physiology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Lung/virology , Lung/immunology , Lung/pathology , Organoids/virology , COVID-19 Drug Treatment , Induced Pluripotent Stem Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , Inflammation , Cytokines/metabolism , Apoptosis
2.
Nanomedicine ; 20: 101986, 2019 08.
Article in English | MEDLINE | ID: mdl-31059794

ABSTRACT

The potential biomedical applications of the MNPs nanohybrids coated with m-carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 cell line were demonstrated. Prior to testing 1-MNPs' in vitro toxicity, studies of colloidal stability of the 1-MNPs' suspension in different culture media and temperatures were carried out. TEM images and chemical titration confirmed that 1-MNPs penetrate into cells. Additionally, to explore 1-MNPs' potential use in Boron Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-carboranyl coordinated with the MNPs core after uptake was proven by XPS and EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the number of cultured glioblastoma cells after 1-MNP treatment, and the systemic administration of 1-MNPs in mice was well tolerated with no major signs of toxicity.


Subject(s)
Biocompatible Materials/chemistry , Boron/chemistry , Magnetite Nanoparticles , Neoplasms/therapy , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Colloids/chemistry , Diffusion , Endothelial Cells/metabolism , Glioblastoma/metabolism , Glioblastoma/ultrastructure , Humans , Hydrodynamics , Ligands , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Mice , Neutrons , Suspensions
3.
J Biol Chem ; 291(3): 1221-34, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26582200

ABSTRACT

Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.


Subject(s)
Apoptosis , Calcium Signaling , Endoplasmic Reticulum/metabolism , Fas Ligand Protein/antagonists & inhibitors , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Cell Line , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Female , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurons/cytology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Transport , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
4.
J Neurochem ; 139(1): 11-21, 2016 10.
Article in English | MEDLINE | ID: mdl-27385439

ABSTRACT

The importance of death receptor (DR) signaling in embryonic development and physiological homeostasis is well established, as is the existence of several molecules that modulate DRs function, among them Fas Apoptotis Inhibitory Molecules. Although FAIM1, FAIM2, and FAIM3 inhibit Fas-induced cell death, they are not structurally related, nor do they share expression patterns. Moreover, they inhibit apoptosis through completely different mechanisms. FAIM1 and FAIM2 protect neurons from DR-induced apoptosis and are involved in neurite outgrowth and neuronal plasticity. FAIM1 inhibits Fas ligand- and tumor necrosis factor alpha-induced apoptosis by direct interaction with Fas receptor and through the stabilization of levels of X-linked inhibitor of apoptosis protein, a potent anti-apoptotic protein that inhibits caspases. Low FAIM1 levels are found in Alzheimer's disease, thus sensitizing neurons to tumor necrosis factor alpha and prompting neuronal loss. FAIM2 protects from Fas by direct interaction with Fas receptor, as well as by modulating calcium release at the endoplasmic reticulum through interaction with Bcl-xL. Several studies prove the role of FAIM2 in diseases of the nervous system, such as ischemia, bacterial meningitis, and neuroblastoma. The less characterized member of the FAIM family is FAIM3, which is expressed in tissues of the digestive and urinary tracts, bone marrow and testes, and restricted to the cerebellum in the nervous system. FAIM3 protects against DR-induced apoptosis by inducing the expression of other DR-antagonists such as CFLAR or through the interaction with the DR-adaptor protein Fas-associated via death domain. FAIM3 null mouse models reveal this protein as an important mediator of inflammatory autoimmune responses such as those triggered in autoimmune encephalomyelitis. Given the differences between FAIMs and the variety of processes in which they are involved, here we sought to provide a concise review about these molecules and their roles in the physiology and pathology of the nervous system. Even though they share name and inhibit Fas-induced cell death, Fas apoptotic inhibitory molecules (FAIMs) are not structurally related and inhibit apoptosis through completely different mechanisms. In this review, we describe FAIM1, FAIM2, and FAIM3 functions in the nervous system, and their implication in diverse pathologies such as neurodegenerative disease, cancer, or autoimmune diseases.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Cell Death/genetics , Nervous System , fas Receptor/antagonists & inhibitors , fas Receptor/genetics , Animals , Apoptosis/drug effects , Cell Death/drug effects , Humans , Mice
5.
J Neurosci ; 34(44): 14793-802, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25355231

ABSTRACT

Group I metabotropic glutamate (mGlu) receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca(2+) wave-dependent activation of small-conductance Ca(2+)-activated K(+) (SK) channels. Here, we show that mGlu5 receptors and SK2 channels coassemble in heterologous coexpression systems and in rat brain. Further, in cotransfected cells or rat primary hippocampal neurons, mGlu5 receptor stimulation activated apamin-sensitive SK2-mediated K(+) currents. In addition, coexpression of mGlu5 receptors and SK2 channels promoted plasma membrane targeting of both proteins and correlated with increased mGlu5 receptor function that was unexpectedly blocked by apamin. These results demonstrate a reciprocal functional interaction between mGlu5 receptors and SK2 channels that reflects their molecular coassembly.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Animals , Apamin/pharmacology , Calcium/metabolism , HEK293 Cells , Hippocampus/drug effects , Hippocampus/ultrastructure , Humans , Mice , Neurons/drug effects , Neurons/ultrastructure , Rats
6.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747824

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.

7.
Front Cell Dev Biol ; 9: 664295, 2021.
Article in English | MEDLINE | ID: mdl-34055797

ABSTRACT

Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.

8.
J Vis Exp ; (174)2021 08 24.
Article in English | MEDLINE | ID: mdl-34515683

ABSTRACT

Macropinocytosis is a non-specific fluid-phase uptake pathway that allows cells to internalize large extracellular cargo, such as proteins, pathogens, and cell debris, through bulk endocytosis. This pathway plays an essential role in a variety of cellular processes, including the regulation of immune responses and cancer cell metabolism. Given this importance in biological function, examining cell culture conditions can provide valuable information by identifying regulators of this pathway and optimizing conditions to be employed in the discovery of novel therapeutic approaches. The study describes an automated imaging and analysis technique using standard laboratory equipment and a cell imaging multi-mode plate reader for the rapid quantification of the macropinocytic index in adherent cells. The automated method is based on the uptake of high molecular weight fluorescent dextran and can be applied to 96-well microplates to facilitate assessments of multiple conditions in one experiment or fixed samples mounted onto glass coverslips. This approach is aimed at maximizing reproducibility and reducing experimental variation while being both time-saving and cost-effective.


Subject(s)
Endosomes , Pinocytosis , Endocytosis , Microscopy, Fluorescence , Reproducibility of Results
9.
Cancer Discov ; 11(7): 1808-1825, 2021 07.
Article in English | MEDLINE | ID: mdl-33653692

ABSTRACT

Although pancreatic ductal adenocarcinoma (PDAC) cells are exposed to a nutrient-depleted tumor microenvironment, they can acquire nutrients via macropinocytosis, an endocytic form of protein scavenging that functions to support cancer metabolism. Here, we provide evidence that macropinocytosis is also operational in the pancreatic tumor stroma. We find that glutamine deficiency triggers macropinocytic uptake in pancreatic cancer-associated fibroblasts (CAF). Mechanistically, we decipher that stromal macropinocytosis is potentiated via the enhancement of cytosolic Ca2+ and dependent on ARHGEF2 and CaMKK2-AMPK signaling. We elucidate that macropinocytosis has a dual function in CAFs-it serves as a source of intracellular amino acids that sustain CAF cell fitness and function, and it provides secreted amino acids that promote tumor cell survival. Importantly, we demonstrate that stromal macropinocytosis supports PDAC tumor growth. These results highlight the functional role of macropinocytosis in the tumor stroma and provide a mechanistic understanding of how nutrient deficiency can control stromal protein scavenging. SIGNIFICANCE: Glutamine deprivation drives stromal macropinocytosis to support CAF cell fitness and provide amino acids that sustain PDAC cell survival. Selective disruption of macropinocytosis in CAFs suppresses PDAC tumor growth.This article is highlighted in the In This Issue feature, p. 1601.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Stromal Cells , Tumor Microenvironment , Animals , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Carcinoma, Pancreatic Ductal/pathology , Humans , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Pinocytosis , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction
10.
J Exp Med ; 217(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32510550

ABSTRACT

Tumor cells rely on glutamine to fulfill their metabolic demands and sustain proliferation. The elevated consumption of glutamine can lead to intratumoral nutrient depletion, causing metabolic stress that has the potential to impact tumor progression. Here, we show that nutrient stress caused by glutamine deprivation leads to the induction of epithelial-mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, we demonstrate that glutamine deficiency regulates EMT through the up-regulation of the EMT master regulator Slug, a process that is dependent on both MEK/ERK signaling and ATF4. We find that Slug is required in PDAC cells for glutamine deprivation-induced EMT, cell motility, and nutrient stress survival. Importantly, we decipher that Slug is associated with nutrient stress in PDAC tumors and is required for metastasis. These results delineate a novel role for Slug in the nutrient stress response and provide insight into how nutrient depletion might influence PDAC progression.


Subject(s)
Epithelial-Mesenchymal Transition , Glutamine/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Snail Family Transcription Factors/metabolism , Activating Transcription Factor 4/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement , Cell Survival , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice, Inbred C57BL , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Snail Family Transcription Factors/genetics , Stress, Physiological
11.
Cancer Discov ; 10(6): 822-835, 2020 06.
Article in English | MEDLINE | ID: mdl-32200349

ABSTRACT

Cancer cells reprogram their metabolism to meet elevated energy demands and favor glycolysis for energy production. This boost in glycolytic flux supports proliferation, but also generates acid in the form of hydrogen ions that must be eliminated from the cytoplasm to maintain the alkaline intracellular pH (pHi) associated with transformation. To cope with acid production, tumor cells employ ion transport systems, including the family of sodium-hydrogen exchangers (NHE). Here, we identify NHE7 as a novel regulator of pHi in pancreatic ductal adenocarcinoma (PDAC). We determine that NHE7 suppression causes alkalinization of the Golgi, leading to a buildup of cytosolic acid that diminishes tumor cell fitness mainly through the dysregulation of actin. Importantly, NHE7 knockdown in vivo leads to the abrogation of tumor growth. These results identify Golgi acidification as a mechanism to control pHi and point to the regulation of pHi as a possible therapeutic vulnerability in PDAC. SIGNIFICANCE: NHE7 regulates cytosolic pH through Golgi acidification, which points to the Golgi as a "proton sink" for metabolic acid. Disruption of cytosolic pH homeostasis via NHE7 suppression compromises PDAC cell viability and tumor growth.See related commentary by Ward and DeNicola, p. 768.This article is highlighted in the In This Issue feature, p. 747.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Golgi Apparatus/metabolism , Pancreatic Neoplasms/pathology , Sodium-Hydrogen Exchangers/metabolism , Homeostasis , Humans , Hydrogen-Ion Concentration
12.
Methods Mol Biol ; 1928: 113-123, 2019.
Article in English | MEDLINE | ID: mdl-30725454

ABSTRACT

Macropinocytosis has emerged as an important nutrient supply pathway that sustains cell growth of cancer cells within the nutrient-poor tumor microenvironment. By internalizing extracellular fluid through this bulk endocytic pathway, albumin is supplied to the cancer cells, which, after degradation, serves as an amino acid source to meet the high nutrient demands of these highly proliferating cells. Here, we describe a streamlined protocol for visualization and quantitation of macropinosomes in adherent cancer cells grown in vitro. The determination of the "macropinocytic index" provides a tool for measuring the extent to which this internalization pathway is utilized within the cancer cells and allows for comparison between different cell lines and treatments. The protocol provided herein has been optimized for reproducibility and is readily adaptable to multiple conditions and settings.


Subject(s)
Neoplasms/metabolism , Pinocytosis , Biomarkers , Cell Line, Tumor , Endocytosis , Endosomes/metabolism , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL