Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Affiliation country
Publication year range
1.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007263

ABSTRACT

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Subject(s)
Genomic Structural Variation/genetics , Genomics/methods , Neoplasms/genetics , Chromosome Inversion/genetics , Chromothripsis , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Genome, Human/genetics , Humans , Mutation/genetics , Whole Genome Sequencing/methods
2.
Nature ; 616(7958): 798-805, 2023 04.
Article in English | MEDLINE | ID: mdl-37046089

ABSTRACT

Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Carcinogenesis , DNA , Disease Progression , Early Detection of Cancer , Esophageal Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Case-Control Studies , DNA/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Carcinogenesis/genetics , Whole Genome Sequencing , Cohort Studies , Biopsy , Oncogenes , Immunomodulation , DNA Copy Number Variations , Gene Amplification , Early Detection of Cancer/methods
3.
PLoS Genet ; 9(6): e1003553, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23785299

ABSTRACT

Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of somatic genomic abnormalities (SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce cancer risk, including risk of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive mechanisms of NSAIDs are not fully understood. We hypothesized that NSAIDs modulate clonal evolution by reducing SGA acquisition rate. We evaluated thirteen individuals with BE. Eleven had not used NSAIDs for 6.2±3.5 (mean±standard deviation) years and then began using NSAIDs for 5.6±2.7 years, whereas two had used NSAIDs for 3.3±1.4 years and then discontinued use for 7.9±0.7 years. 161 BE biopsies, collected at 5-8 time points over 6.4-19 years, were analyzed using 1Million-SNP arrays to detect SGAs. Even in the earliest biopsies there were many SGAs (284±246 in 10/13 and 1442±560 in 3/13 individuals) and in most individuals the number of SGAs changed little over time, with both increases and decreases in SGAs detected. The estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 7.1-8.6) off-NSAIDs and 0.6 (95% SI 0.3-1.5) on-NSAIDs. Twelve individuals did not progress to EA. In ten we detected 279±86 SGAs affecting 53±30 Mb of the genome per biopsy per time point and in two we detected 1,463±375 SGAs affecting 180±100 Mb. In one individual who progressed to EA we detected a clone having 2,291±78 SGAs affecting 588±18 Mb of the genome at three time points in the last three of 11.4 years of follow-up. NSAIDs were associated with reduced rate of acquisition of SGAs in eleven of thirteen individuals. Barrett's cells maintained relative equilibrium level of SGAs over time with occasional punctuations by expansion of clones having massive amount of SGAs.


Subject(s)
Adenocarcinoma/genetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Barrett Esophagus/genetics , Clonal Evolution/genetics , Genomic Instability/drug effects , Adenocarcinoma/pathology , Aged , Barrett Esophagus/pathology , Biopsy , Clonal Evolution/drug effects , Disease Progression , Female , Humans , Male , Middle Aged , Phylogeny , Polymorphism, Single Nucleotide
4.
Nat Genet ; 38(4): 468-73, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16565718

ABSTRACT

Neoplasms are thought to progress to cancer through genetic instability generating cellular diversity and clonal expansions driven by selection for mutations in cancer genes. Despite advances in the study of molecular biology of cancer genes, relatively little is known about evolutionary mechanisms that drive neoplastic progression. It is unknown, for example, which may be more predictive of future progression of a neoplasm: genetic homogenization of the neoplasm, possibly caused by a clonal expansion, or the accumulation of clonal diversity. Here, in a prospective study, we show that clonal diversity measures adapted from ecology and evolution can predict progression to adenocarcinoma in the premalignant condition known as Barrett's esophagus, even when controlling for established genetic risk factors, including lesions in TP53 (p53; ref. 6) and ploidy abnormalities. Progression to cancer through accumulation of clonal diversity, on which natural selection acts, may be a fundamental principle of neoplasia with important clinical implications.


Subject(s)
Adenocarcinoma/genetics , Esophageal Neoplasms/genetics , Adenocarcinoma/pathology , Disease Progression , Esophageal Neoplasms/pathology , Genes, p16 , Genes, p53 , Humans , In Situ Hybridization, Fluorescence , Loss of Heterozygosity
5.
Carcinogenesis ; 35(12): 2740-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25280564

ABSTRACT

Incidence of esophageal adenocarcinoma (EA) in Western countries has increased markedly in recent decades. Although several risk factors have been identified for EA and its precursor, Barrett's esophagus (BE), including reflux, Caucasian race, male gender, obesity, and smoking, less is known about the role of inherited genetic variation. Frequent somatic mutations in the tumor suppressor genes CDKN2A and TP53 were recently reported in EA tumors, while somatic alterations at 9p (CDKN2A) and 17p (TP53) have been implicated as predictors of progression from BE to EA. Motivated by these findings, we used data from a genome-wide association study of 2515 EA cases and 3207 controls to analyze 37 germline single nucleotide polymorphisms at the CDKN2A and TP53 loci. Three CDKN2A polymorphisms were nominally associated (P < 0.05) with reduced risk of EA: rs2518720 C>T [intronic, odds ratio 0.90, P = 0.0121, q = 0.3059], rs3088440 G>A (3'UTR, odds ratio 0.84, P = 0.0186, q = 0.3059), and rs4074785 C>T (intronic, odds ratio 0.85, P = 0.0248, q = 0.3059). None of the TP53 single nucleotide polymorphisms reached nominal significance. Two of the CDKN2A variants identified were also associated with reduced risk of progression from BE to EA, when assessed in a prospective cohort of 408 BE patients: rs2518720 (hazard ratio 0.57, P = 0.0095, q = 0.0285) and rs3088440 (hazard ratio 0.34, P = 0.0368, q = 0.0552). In vitro functional studies of rs3088440, a single nucleotide polymorphism located in the seed sequence of a predicted miR-663b binding site, suggested a mechanism whereby the G>A substitution may attenuate miR-663b-mediated repression of the CDKN2A transcript. This study provides the first evidence that germline variation at the CDKN2A locus may influence EA susceptibility.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Esophageal Neoplasms/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/pathology , Aged , Barrett Esophagus/pathology , Case-Control Studies , Disease Progression , Esophageal Neoplasms/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Risk Factors
6.
Nat Commun ; 13(1): 2300, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484108

ABSTRACT

While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett's esophagus compared to 40 Barrett's patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett's tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett's versus those who progress to cancer is acquisition and expansion of TP53-/- cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett's esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Disease Progression , Esophageal Neoplasms/pathology , Humans
7.
Evol Appl ; 14(2): 399-415, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664784

ABSTRACT

Barrett's Esophagus is a neoplastic condition which progresses to esophageal adenocarcinoma in 5% of cases. Key events affecting the outcome likely occur before diagnosis of Barrett's and cannot be directly observed; we use phylogenetic analysis to infer such past events. We performed whole-genome sequencing on 4-6 samples from 40 cancer outcome and 40 noncancer outcome patients with Barrett's Esophagus, and inferred within-patient phylogenies of deconvoluted clonal lineages. Spatially proximate lineages clustered in the phylogenies, but temporally proximate ones did not. Lineages with inferred loss-of-function mutations in both copies of TP53 and CDKN2A showed enhanced spatial spread, whereas lineages with loss-of-function mutations in other frequently mutated loci did not. We propose a two-phase model with expansions of TP53 and CKDN2A mutant lineages during initial growth of the segment, followed by relative stasis. Subsequent to initial expansion, mutations in these loci as well as ARID1A and SMARCA4 may show a local selective advantage but do not expand far: The spatial structure of the Barrett's segment remains stable during surveillance even in patients who go on to cancer. We conclude that the cancer/noncancer outcome is strongly affected by early steps in formation of the Barrett's segment.

8.
Clin Cancer Res ; 14(21): 6988-95, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18980994

ABSTRACT

PURPOSE: Elevated cellular proliferation and cell cycle abnormalities, which have been associated with premalignant lesions, may be caused by inactivation of tumor suppressor genes. We measured proliferative and cell cycle fractions of biopsies from a cohort of patients with Barrett's esophagus to better understand the role of proliferation in early neoplastic progression and the association between cell cycle dysregulation and tumor suppressor gene inactivation. EXPERIMENTAL DESIGN: Cell proliferative fractions (determined by Ki67/DNA multiparameter flow cytometry) and cell cycle fractions (DNA content flow cytometry) were measured in 853 diploid biopsies from 362 patients with Barrett's esophagus. The inactivation status of CDKN2A and TP53 was assessed in a subset of these biopsies in a cross-sectional study. A prospective study followed 276 of the patients without detectable aneuploidy for an average of 6.3 years with esophageal adenocarcinoma as an end point. RESULTS: Diploid S and 4N (G(2)/tetraploid) fractions were significantly higher in biopsies with TP53 mutation and loss of heterozygosity. CDKN2A inactivation was not associated with higher Ki67-positive, diploid S, G(1), or 4N fractions. High Ki67-positive and G(1)-phase fractions were not associated with the future development of esophageal adenocarcinoma (P=0.13 and P=0.15, respectively), whereas high diploid S-phase and 4N fractions were (P=0.03 and P<0.0001, respectively). CONCLUSIONS: High Ki67-positive proliferative fractions were not associated with inactivation of CDKN2A and TP53 or future development of cancer in our cohort of patients with Barrett's esophagus. Biallelic inactivation of TP53 was associated with elevated 4N fractions, which have been associated with the future development of esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/complications , Barrett Esophagus/pathology , Cell Cycle , Cell Division , Esophageal Neoplasms/pathology , Adenocarcinoma/diagnosis , Adult , Aged , Cohort Studies , Esophageal Neoplasms/etiology , Female , Genes, p16 , Genes, p53 , Humans , Ki-67 Antigen/metabolism , Longitudinal Studies , Loss of Heterozygosity , Male , Middle Aged , Mutation , Prospective Studies
9.
Genome Med ; 11(1): 14, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30867038

ABSTRACT

It was highlighted that in the original article [1] the Availability of data and materials section was incorrect.

10.
PLoS Comput Biol ; 3(11): e244, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18052545

ABSTRACT

Single nucleotide polymorphisms (SNPs) have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution) for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes) and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.


Subject(s)
Chromosome Mapping/methods , DNA Mutational Analysis/methods , Loss of Heterozygosity/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Animals , Base Sequence , Humans , Molecular Sequence Data
11.
Genome Med ; 10(1): 17, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29486792

ABSTRACT

BACKGROUND: Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to protect against tetraploidy, aneuploidy, and chromosomal alterations in the metaplastic condition Barrett's esophagus (BE) and to lower the incidence and mortality of esophageal adenocarcinoma (EA). The esophagus is exposed to both intrinsic and extrinsic mutagens resulting from gastric reflux, chronic inflammation, and exposure to environmental carcinogens such as those found in cigarettes. Here we test the hypothesis that NSAID use inhibits accumulation of point mutations/indels during somatic genomic evolution in BE. METHODS: Whole exome sequences were generated from 82 purified epithelial biopsies and paired blood samples from a cross-sectional study of 41 NSAID users and 41 non-users matched by sex, age, smoking, and continuous time using or not using NSAIDs. RESULTS: NSAID use reduced overall frequency of point mutations across the spectrum of mutation types, lowered the frequency of mutations even when adjusted for both TP53 mutation and smoking status, and decreased the prevalence of clones with high variant allele frequency. Never smokers who consistently used NSAIDs had fewer point mutations in signature 17, which is commonly found in EA. NSAID users had, on average, a 50% reduction in functional gene mutations in nine cancer-associated pathways and also had less diversity in pathway mutational burden compared to non-users. CONCLUSIONS: These results indicate NSAID use functions to limit overall mutations on which selection can act and supports a model in which specific mutant cell populations survive or expand better in the absence of NSAIDs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Barrett Esophagus/drug therapy , Barrett Esophagus/genetics , Exome/genetics , Mutation/genetics , DNA Copy Number Variations/genetics , Gene Frequency/genetics , Humans , Loss of Heterozygosity , Mutagenesis/genetics
12.
PLoS Med ; 4(2): e67, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17326708

ABSTRACT

BACKGROUND: Somatic genetic CDKN2A, TP53, and DNA content abnormalities are common in many human cancers and their precursors, including esophageal adenocarcinoma (EA) and Barrett's esophagus (BE), conditions for which aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as possible chemopreventive agents; however, little is known about the ability of a biomarker panel to predict progression to cancer nor how NSAID use may modulate progression. We aimed to evaluate somatic genetic abnormalities with NSAIDs as predictors of EA in a prospective cohort study of patients with BE. METHODS AND FINDINGS: Esophageal biopsies from 243 patients with BE were evaluated at baseline for TP53 and CDKN2A (p16) alterations, tetraploidy, and aneuploidy using sequencing; loss of heterozygosity (LOH); methylation-specific PCR; and flow cytometry. At 10 y, all abnormalities, except CDKN2A mutation and methylation, contributed to EA risk significantly by univariate analysis, ranging from 17p LOH (relative risk [RR] = 10.6; 95% confidence interval [CI] 5.2-21.3, p < 0.001) to 9p LOH (RR = 2.6; 95% CI 1.1-6.0, p = 0.03). A panel of abnormalities including 17p LOH, DNA content tetraploidy and aneuploidy, and 9p LOH was the best predictor of EA (RR = 38.7; 95% CI 10.8-138.5, p < 0.001). Patients with no baseline abnormality had a 12% 10-y cumulative EA incidence, whereas patients with 17p LOH, DNA content abnormalities, and 9p LOH had at least a 79.1% 10-y EA incidence. In patients with zero, one, two, or three baseline panel abnormalities, there was a significant trend toward EA risk reduction among NSAID users compared to nonusers (p = 0.01). The strongest protective effect was seen in participants with multiple genetic abnormalities, with NSAID nonusers having an observed 10-y EA risk of 79%, compared to 30% for NSAID users (p < 0.001). CONCLUSIONS: A combination of 17p LOH, 9p LOH, and DNA content abnormalities provided better EA risk prediction than any single TP53, CDKN2A, or DNA content lesion alone. NSAIDs are associated with reduced EA risk, especially in patients with multiple high-risk molecular abnormalities.


Subject(s)
Adenocarcinoma/genetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA/genetics , Esophageal Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/epidemiology , Adult , Aged , Aged, 80 and over , Aneuploidy , Barrett Esophagus/pathology , Biopsy , Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 9 , DNA Methylation , Esophageal Neoplasms/epidemiology , Esophagoscopy , Esophagus/pathology , Female , Humans , Incidence , Longitudinal Studies , Loss of Heterozygosity , Male , Middle Aged , Mutation , Prospective Studies , Risk Assessment
13.
Cancer Epidemiol Biomarkers Prev ; 15(10): 1935-40, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17035402

ABSTRACT

BACKGROUND: Defects in DNA damage recognition and repair have been associated with a wide variety of cancers. We conducted a prospective study to determine whether mutagen sensitivity, as determined by an in vitro assay, was associated with the future development of cancer in patients with Barrett's esophagus, which is associated with increased risk of progression to esophageal adenocarcinoma. METHODS: We measured sensitivity to bleomycin in peripheral blood lymphocytes in a cohort of 220 patients with Barrett's esophagus. We followed these patients for 1,230 person-years (range, 3 months to 10.1 years; median, 6.4 years), using development of cancer and aneuploidy as end points. A subset of these patients was evaluated for inactivation of tumor-suppressor genes CDKN2A/p16 and TP53 [by mutation and loss of heterozygosity (LOH)] in their Barrett's segments at the time of, or before, the bleomycin test, and the patients were stratified by CDKN2A/p16 and TP53 status in an analysis of mutagen sensitivity and progression. RESULTS: Bleomycin-sensitive patients were found to be at significantly greater risk of developing aneuploidy (adjusted hazard ratio, 3.71; 95% confidence interval, 1.44-9.53) and nonsignificantly greater risk of cancer (adjusted hazard ratio, 1.63; 95% confidence interval, 0.71-3.75). Among patients with detectable LOH at the TP53 locus (on chromosome 17p), increasing bleomycin sensitivity was associated with increased risk of developing cancer (P(trend) < 0.001) and aneuploidy (P(trend) = 0.005). CONCLUSIONS: This study supports the hypothesis that sensitivity to mutagens increases the risk of neoplastic progression in persons with Barrett's esophagus, particularly those with 17p LOH including TP53.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/pathology , Esophageal Neoplasms/pathology , Mutagens/analysis , Adenocarcinoma/etiology , Adenocarcinoma/genetics , Adult , Aged , Aneuploidy , Antibiotics, Antineoplastic/pharmacology , Barrett Esophagus/complications , Barrett Esophagus/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Bleomycin/pharmacology , Chromosome Breakage/drug effects , Chromosomes, Human, Pair 17/drug effects , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 9/drug effects , Chromosomes, Human, Pair 9/genetics , Disease Progression , Esophageal Neoplasms/etiology , Esophageal Neoplasms/genetics , Female , Follow-Up Studies , Gene Expression Regulation/genetics , Genes, p16 , Genes, p53/genetics , Genetic Predisposition to Disease , Humans , Loss of Heterozygosity , Male , Middle Aged , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Prospective Studies , Sensitivity and Specificity
14.
Cancer Epidemiol Biomarkers Prev ; 15(3): 509-16, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16537709

ABSTRACT

BACKGROUND AND AIMS: 17p (TP53) loss of heterozygosity (LOH) has been reported to be predictive of progression from Barrett's esophagus to esophageal adenocarcinoma, but the mechanism by which TP53 LOH develops is unknown. It could be (a) DNA deletion, (b) LOH without copy number change, or (c) tetraploidy followed by genetic loss. If an alternative biomarker assay, such as fluorescence in situ hybridization (FISH), provided equivalent results, then translation to the clinic might be accelerated, because LOH genotyping is presently limited to research centers. METHODS: We evaluated mechanisms of TP53 LOH to determine if FISH and TP53 LOH provided equivalent results on the same flow-sorted samples (n = 43) representing established stages of clonal progression (diploid, diploid with TP53 LOH, aneuploid) in 19 esophagectomy specimens. RESULTS: LOH developed by all three mechanisms: 32% had DNA deletions, 32% had no copy number change, and 37% had FISH patterns consistent with a tetraploid intermediate followed by genetic loss. Thus, FISH and LOH are not equivalent (P < 0.000001). CONCLUSIONS: LOH develops by multiple chromosome mechanisms in Barrett's esophagus, all of which can be detected by genotyping. FISH cannot detect LOH without copy number change, and dual-probe FISH is required to detect the complex genetic changes associated with a tetraploid intermediate. Alternative biomarker assay development should be guided by appreciation and evaluation of the biological mechanisms generating the biomarker abnormality to detect potential sources of discordance. FISH will require validation in adequately powered longitudinal studies before implementation as a clinical diagnostic for esophageal adenocarcinoma risk prediction.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , Esophageal Neoplasms/genetics , Genes, p53 , Loss of Heterozygosity , Precancerous Conditions/pathology , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Barrett Esophagus/mortality , Barrett Esophagus/pathology , Biomarkers, Tumor/analysis , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophagectomy , Esophagoscopy , Female , Humans , In Situ Hybridization, Fluorescence , Male , Neoplasm Staging , Prognosis , Retrospective Studies , Risk Assessment , Sensitivity and Specificity , Survival Rate
15.
Am J Surg Pathol ; 30(4): 423-35, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16625087

ABSTRACT

Little is known regarding the significance of esophageal biopsies that show dysplasia-like atypia limited to the bases of the crypts, without involvement of the surface epithelium in Barrett's esophagus (BE). The aim of this study was to evaluate the clinical, pathologic, immunohistochemical, and molecular characteristics of basal crypt dysplasia-like atypia (BCDA) with surface maturation in surveillance endoscopic mucosal biopsies to gain insight into its biologic significance. The Seattle Barrett's Esophagus Project is a prospective cohort study in which patients and their biopsies have been evaluated prospectively for clinical, pathologic, and molecular markers. As part of continued surveillance of the cohort, 206 consecutive BE patients were evaluated prospectively for BCDA between July 1, 2001 and August 13, 2003; 15 patients had BCDA (prevalence rate = 7.3%). These 15 patients were evaluated for clinical, pathologic, and immunohistochemical (p53 and MIB-1) features during the study period (2001-2003) as well as associations with clinical, pathologic, and molecular markers [17p(TP53) loss of heterozygosity (LOH), 9p(p16) LOH, tetraploidy, and aneuploidy] that were detected previously in the same patients in the cohort study (1983-2001). All BE patients with BCDA (male-to female ratio, 12:3; mean age, 72 years; mean length of BE, 7.0 cm; mean duration of BE, 95.1 months), except 2 (87%), had dysplasia or adenocarcinoma detected in biopsies either prior to or concurrent to the one that contained BCDA. In contrast, only 112 of 191 (59%) controls had neoplasia during the same time period (59%, P = 0.05). The difference between BCDA and controls was particularly significant with regard to the association with high-grade dysplasia (P = 0.004). Compared with adjacent nonatypical and nondysplastic (metaplastic) BE, areas of BCDA showed a significantly elevated prevalence rate of p53 positivity (60% vs. 13%, P<0.02) and a significantly elevated total crypt and basal crypt MIB-1 proliferation rate (P<0.001). Indeed, the MIB-1 proliferation rate in the basal portion of the crypts in BCDA was similar to that detected in conventional low- or high-grade dysplasia. Patients with BCDA showed a significantly increased rate of 17p(TP53) LOH (P = 0.016), aneuploidy (P = 0.004), and a trend in increased 9p(p16) LOH (P = 0.08), compared with control patients without BCDA. The clinical, pathologic, immunohistochemical, and molecular abnormalities were similar in BCDA cases that were considered low-grade versus those considered high-grade by histologic evaluation, except that high-grade cases tended to be older (79 years vs. 68 years, P = 0.06). BCDA with surface maturation, in mucosal biopsies from patients with BE, is an uncommon but significant pathologic change that shows a variety of proliferative and molecular abnormalities and has a high association with conventional dysplasia and/or adenocarcinoma. Based on these findings, BCDA warrants further investigation as a possible subtype of true dysplasia despite the morphologic appearance of surface maturation.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , Esophageal Neoplasms/genetics , Gastric Mucosa/pathology , Precancerous Conditions/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Biomarkers, Tumor/metabolism , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 9/genetics , Cohort Studies , DNA, Neoplasm/analysis , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Female , Gastric Mucosa/metabolism , Humans , Loss of Heterozygosity , Male , Middle Aged , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Prevalence , Prospective Studies , Risk Factors
16.
Cancer Res ; 64(10): 3414-27, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15150093

ABSTRACT

Neoplastic progression is an evolutionary process characterized by genomic instability and waves of clonal expansions carrying genetic and epigenetic lesions to fixation (100% of the cell population). However, an evolutionarily neutral lesion may also reach fixation if it spreads as a hitchhiker on a selective sweep. We sought to distinguish advantageous lesions from hitchhikers in the premalignant condition Barrett's esophagus. Patients (211) had biopsies taken at 2-cm intervals in their Barrett's segments. Purified epithelial cells were assayed for loss of heterozygosity and microsatellite shifts on chromosomes 9 and 17, sequence mutations in CDKN2A/MTS1/INK4a (p16) and TP53 (p53), and methylation of the p16 promoter. We measured the expanse of a lesion in a Barrett's segment as the proportion of proliferating cells that carried a lesion in that locus. We then selected the lesion having expanses >90% in the greatest number of patients as our first putative advantageous lesion. We filtered out hitchhikers by removing all expanses of other lesions that did not occur independent of the advantageous lesion. The entire process was repeated on the remaining expanses to identify additional advantageous lesions. p16 loss of heterozygosity, promoter methylation, and sequence mutations have strong, independent, advantageous effects on Barrett's cells early in progression. Second lesions in p16 and p53 are associated with later selective sweeps. Virtually all of the other lesion expansions, including microsatellite shifts, could be explained as hitchhikers on p16 lesion clonal expansions. These techniques can be applied to any neoplasm.


Subject(s)
Barrett Esophagus/genetics , Barrett Esophagus/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Genes, p16/physiology , Mutation , DNA Methylation , Disease Progression , Genes, p53/physiology , Humans , Loss of Heterozygosity , Ploidies
17.
Cancer Res ; 64(20): 7629-33, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15492292

ABSTRACT

There is debate in the literature over the relative importance of genetic instability and clonal expansion during progression to cancer. Barrett's esophagus is a uniquely suited model to investigate neoplastic progression prospectively because periodic endoscopic biopsy surveillance is recommended for early detection of esophageal adenocarcinoma. We hypothesized that expansion of clones with genetic instability would predict progression to esophageal adenocarcinoma. We measured p16 (CDKN2A/INK4A) lesions (loss of heterozygosity, mutations, and CpG island methylation), p53 (TP53) lesions (loss of heterozygosity, mutation) and ploidy abnormalities (aneuploidy, tetraploidy) within each Barrett's esophagus segment of a cohort of 267 research participants, who were followed prospectively with cancer as an outcome. We defined the size of a lesion as the fraction of cells with the lesion multiplied by the length of the Barrett's esophagus segment. A Cox proportional hazards regression indicates that the sizes of clones with p53 loss of heterozygosity (relative risk = 1.27(x) for an x cm clone; 95% confidence interval, 1.07-1.50) or ploidy abnormalities (relative risk = 1.31(x) for an x cm clone; 95% confidence interval, 1.07-1.60) predict progression to esophageal adenocarcinoma better than the mere presence of such clones (likelihood ratio test, P < 0.01). Controlling for length of the Barrett's esophagus segment had little effect. The size of a clone with a p16 lesion is not a significant predictor of esophageal adenocarcinoma when we controlled for p53 loss of heterozygosity status. The combination of clonal expansion and genetic instability is a better predictor of cancer outcome than either alone. This implies that interventions that limit expansion of genetically unstable clones may reduce risk of progression to cancer.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Aneuploidy , Cohort Studies , Disease Progression , Female , Genes, p16 , Genes, p53/genetics , Genetic Predisposition to Disease , Humans , Loss of Heterozygosity , Male , Middle Aged
18.
Cancer Prev Res (Phila) ; 8(9): 845-56, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26130253

ABSTRACT

Cancers detected at a late stage are often refractory to treatments and ultimately lethal. Early detection can significantly increase survival probability, but attempts to reduce mortality by early detection have frequently increased overdiagnosis of indolent conditions that do not progress over a lifetime. Study designs that incorporate biomarker trajectories in time and space are needed to distinguish patients who progress to an early cancer from those who follow an indolent course. Esophageal adenocarcinoma is characterized by evolution of punctuated and catastrophic somatic chromosomal alterations and high levels of overall mutations but few recurrently mutated genes aside from TP53. Endoscopic surveillance of Barrett's esophagus for early cancer detection provides an opportunity for assessment of alterations for cancer risk in patients who progress to esophageal adenocarcinoma compared with nonprogressors. We investigated 1,272 longitudinally collected esophageal biopsies in a 248 Barrett's patient case-cohort study with 20,425 person-months of follow-up, including 79 who progressed to early-stage esophageal adenocarcinoma. Cancer progression risk was assessed for total chromosomal alterations, diversity, and chromosomal region-specific alterations measured with single-nucleotide polymorphism arrays in biopsies obtained over esophageal space and time. A model using 29 chromosomal features was developed for cancer risk prediction (area under receiver operator curve, 0.94). The model prediction performance was robust in two independent esophageal adenocarcinoma sets and outperformed TP53 mutation, flow cytometric DNA content, and histopathologic diagnosis of dysplasia. This study offers a strategy to reduce overdiagnosis in Barrett's esophagus and improve early detection of esophageal adenocarcinoma and potentially other cancers characterized by punctuated and catastrophic chromosomal evolution.


Subject(s)
Adenocarcinoma/diagnosis , Barrett Esophagus/diagnosis , Chromosome Aberrations , Esophageal Neoplasms/diagnosis , Risk Assessment/methods , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Biopsy , Cohort Studies , Disease Progression , Endoscopy/methods , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Female , Genome, Human , Humans , Longitudinal Studies , Male , Middle Aged , Mutation , ROC Curve , Stochastic Processes
19.
Cancer Epidemiol Biomarkers Prev ; 11(8): 745-52, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12163328

ABSTRACT

A dramatic increase in the incidence of esophageal adenocarcinoma has occurred among men in the United States over the last two decades. The underlying reasons remain largely unknown, although the increasing prevalence of obesity likely plays a role. Most adenocarcinomas arise in a metaplastic epithelium termed Barrett's esophagus (BE) that develops in approximately 10% of persons who have chronic gastroesophageal reflux. Persons with BE are at high risk (0.5-1.0%/year) of progressing to cancer. In a cross-sectional study of 429 persons with BE, we evaluated the associations between increased body mass index, anthropometric measures, cigarette smoking, use of nonsteroidal anti-inflammatory drugs (NSAIDs) and markers of increased risk, including aneuploidy, increased 4N fraction, loss of heterozygosity (LOH) of 17p and 9p alleles, and high-grade dysplasia (HGD). In logistic regression models adjusting for age, gender, NSAID use, and cigarette smoking, increasing waist:hip ratio was related to increasing risk of aneuploidy (trend P = 0.01), 17p LOH (trend P = 0.005), and 9p LOH (trend P = 0.007). The odds ratios comparing highest to lowest quartiles were 4.3 [95% confidence interval (CI), 1.2-15.6] for aneuploidy, 3.9 (95% CI, 1.3-11.4) for 17p LOH, and 2.7 (95% CI, 1.2-6.3) for 9p LOH. A nonsignificant trend was also observed for increased 4N fraction, whereas little association was found for HGD. Similar patterns of risk were noted for other anthropometric measures such as waist:thigh and abdomen:thigh ratios. There was no evidence that elevated body mass index increased risk of any of the biomarkers. Suggestive evidence also was found for a protective effect of NSAID use. The odds ratios for current users, compared with those who never used NSAIDs regularly, were 0.6 (95% CI, 0.3-1.4) for increased 4N, 0.6 (95% CI, 0.3-1.3) for aneuploidy, 0.3 (95% CI, 0.1-0.7) for 17p LOH, and 0.7 (95% CI, 0.4-1.2) for HGD. There was no association between NSAID use and risk of 9p LOH. We conclude that an abdominal distribution of body fat, which is more common in men and is termed male-pattern obesity, may be a strong predictor of risk of neoplastic progression among persons with BE and may account in part for the male predominance of BE and esophageal adenocarcinoma. We also conclude that NSAID use may reduce the risk of progression to cancer in this population. Prospective studies are needed to confirm these results.


Subject(s)
Aneuploidy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Barrett Esophagus/etiology , Barrett Esophagus/genetics , Body Mass Index , Esophageal Neoplasms/genetics , Genetic Markers , Loss of Heterozygosity , Adult , Aged , Anthropometry , Cell Transformation, Neoplastic , Esophageal Neoplasms/etiology , Female , Flow Cytometry , Humans , Male , Middle Aged , Obesity/complications , Odds Ratio , Regression Analysis , Risk Factors , Sex Factors
20.
Cancer Prev Res (Phila) ; 7(1): 114-27, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24253313

ABSTRACT

All cancers are believed to arise by dynamic, stochastic somatic genomic evolution with genome instability, generation of diversity, and selection of genomic alterations that underlie multistage progression to cancer. Advanced esophageal adenocarcinomas have high levels of somatic copy number alterations. Barrett's esophagus is a risk factor for developing esophageal adenocarcinoma, and somatic chromosomal alterations (SCA) are known to occur in Barrett's esophagus. The vast majority (∼95%) of individuals with Barrett's esophagus do not progress to esophageal adenocarcinoma during their lifetimes, but a small subset develop esophageal adenocarcinoma, many of which arise rapidly even in carefully monitored patients without visible endoscopic abnormalities at the index endoscopy. Using a well-designed, longitudinal case-cohort study, we characterized SCA as assessed by single-nucleotide polymorphism arrays over space and time in 79 "progressors" with Barrett's esophagus as they approach the diagnosis of cancer and 169 "nonprogressors" with Barrett's esophagus who did not progress to esophageal adenocarcinoma over more than 20,425 person-months of follow-up. The genomes of nonprogressors typically had small localized deletions involving fragile sites and 9p loss/copy neutral LOH that generate little genetic diversity and remained relatively stable over prolonged follow-up. As progressors approach the diagnosis of cancer, their genomes developed chromosome instability with initial gains and losses, genomic diversity, and selection of SCAs followed by catastrophic genome doublings. Our results support a model of differential disease dynamics in which nonprogressor genomes largely remain stable over prolonged periods, whereas progressor genomes evolve significantly increased SCA and diversity within four years of esophageal adenocarcinoma diagnosis, suggesting a window of opportunity for early detection.


Subject(s)
Barrett Esophagus/genetics , Chromosome Aberrations , Adenocarcinoma/genetics , Adult , Aged , Biopsy , Case-Control Studies , Chromosomal Instability , Disease Progression , Endoscopy , Esophageal Neoplasms/genetics , Female , Genome, Human , Humans , Longitudinal Studies , Loss of Heterozygosity , Male , Middle Aged , Polymorphism, Single Nucleotide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL