Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | MEDLINE | ID: mdl-38430547

ABSTRACT

There is converging evidence that young blood conveys cells, vesicles, and molecules able to revitalize function and restore organ integrity in old individuals. We assessed the effects of young plasma on the lifespan, epigenetic age, and healthspan of old female rats. Beginning at 25.6 months of age, a group of 9 rats (group T) was intraperitoneally injected with plasma from young rats until their natural death. A group of 8 control rats of the same age received no treatment (group C). Blood samples were collected every other week. Survival curves showed that from age 26 to 30 months, none of the group T animals died, whereas the survival curve of group C rats began to decline at age 26 months. Blood DNAm age versus chronological age showed that DNAm age in young animals increased faster than chronological age, then slowed down, entering a plateau after 27 months. The DNAm age of the treated rats fell below the DNAm age of controls and, in numerical terms, remained consistently lower until natural death. When rats were grouped according to the similarities in their differential blood DNA methylation profile, samples from the treated and control rats clustered in separate groups. Analysis of promoter differential methylation in genes involved in systemic regulatory activities revealed specific GO term enrichment related to the insulin-like factors pathways as well as to cytokines and chemokines associated with immune and homeostatic functions. We conclude that young plasma therapy may constitute a natural, noninvasive intervention for epigenetic rejuvenation and health enhancement.


Subject(s)
Longevity , Physical Appearance, Body , Female , Rats , Animals , Longevity/genetics , DNA Methylation , Aging/genetics , Epigenesis, Genetic
2.
Geroscience ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037528

ABSTRACT

Several studies have indicated that interrupted epigenetic reprogramming using Yamanaka transcription factors (OSKM) can rejuvenate cells from old laboratory animals and humans. However, the potential of OSKM-induced rejuvenation in brain tissue has been less explored. Here, we aimed to restore cognitive performance in 25.3-month-old female Sprague-Dawley rats using OSKM gene therapy for 39 days. Their progress was then compared with the cognitive performance of untreated 3.5-month-old rats as well as old control rats treated with a placebo adenovector. The Barnes maze test, used to assess cognitive performance, demonstrated enhanced cognitive abilities in old rats treated with OSKM compared to old control animals. In the treated old rats, there was a noticeable trend towards improved spatial memory relative to the old controls. Further, OSKM gene expression did not lead to any pathological alterations within the 39 days. Analysis of DNA methylation following OSKM treatment yielded three insights. First, epigenetic clocks for rats suggested a marginally significant epigenetic rejuvenation. Second, chromatin state analysis revealed that OSKM treatment rejuvenated the methylome of the hippocampus. Third, an epigenome-wide association analysis indicated that OSKM expression in the hippocampus of old rats partially reversed the age-related increase in methylation. In summary, the administration of Yamanaka genes via viral vectors rejuvenates the functional capabilities and the epigenetic landscape of the rat hippocampus.

3.
Aging (Albany NY) ; 13(4): 4734-4746, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627519

ABSTRACT

The view of aging has evolved in parallel with the advances in biomedical sciences. Long considered as an irreversible process where interventions were only aimed at slowing down its progression, breakthrough discoveries like animal cloning and cell reprogramming have deeply changed our understanding of postnatal development, giving rise to the emerging view that the epigenome is the driver of aging. The idea was significantly strengthened by the converging discovery that DNA methylation (DNAm) at specific CpG sites could be used as a highly accurate biomarker of age defined by an algorithm known as the Horvath clock. It was at this point where epigenetic rejuvenation came into play as a strategy to reveal to what extent biological age can be set back by making the clock tick backwards. Initial evidence suggests that when the clock is forced to tick backwards in vivo, it is only able to drag the phenotype to a partially rejuvenated condition. In order to explain the results, a bimodular epigenome is proposed, where module A represents the DNAm clock component and module B the remainder of the epigenome. Epigenetic rejuvenation seems to hold the key to arresting or even reversing organismal aging.


Subject(s)
Aging/genetics , Epigenome/genetics , Rejuvenation/physiology , Animals , Biomarkers , Cellular Reprogramming , DNA Methylation , Humans
4.
Curr Gene Ther ; 19(4): 248-254, 2019.
Article in English | MEDLINE | ID: mdl-31475896

ABSTRACT

BACKGROUND: Conventional cell reprogramming involves converting a somatic cell line into induced pluripotent stem cells (iPSC), which subsequently can be re-differentiated to specific somatic cell types. Alternatively, partial cell reprogramming converts somatic cells into other somatic cell types by transient expression of pluripotency genes thus generating intermediates that retain their original cell identity, but are responsive to appropriate cocktails of specific differentiation factors. Additionally, biological rejuvenation by partial cell reprogramming is an emerging avenue of research. OBJECTIVE: Here, we will briefly review the emerging information pointing to partial reprogramming as a suitable strategy to achieve cell reprogramming and rejuvenation, bypassing cell dedifferentiation. METHODS: In this context, regulatable pluripotency gene expression systems are the most widely used at present to implement partial cell reprogramming. For instance, we have constructed a regulatable bidirectional adenovector expressing Green Fluorescent Protein and oct4, sox2, klf4 and c-myc genes (known as the Yamanaka genes or OSKM). RESULTS: Partial cell reprogramming has been used to reprogram fibroblasts to cardiomyocytes, neural progenitors and neural stem cells. Rejuvenation by cyclic partial reprogramming has been achieved both in vivo and in cell culture using transgenic mice and cells expressing the OSKM genes, respectively, controlled by a regulatable promoter. CONCLUSION: Partial reprogramming emerges as a powerful tool for the genesis of iPSC-free induced somatic cells of therapeutic value and for the implementation of in vitro and in vivo rejuvenation keeping cell type identity unchanged.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Pluripotent Stem Cells/cytology , Regenerative Medicine , Rejuvenation/physiology , Animals , Humans , Kruppel-Like Factor 4
SELECTION OF CITATIONS
SEARCH DETAIL